

General Usage Formulas:

Heating water with steam	Lbs./hr. Condensate = $\frac{\text{GPM}}{2}$ x Temperature Rise °F
Heating fuel oil with steam	Lbs./hr. Condensate = $\frac{\text{GPM}}{4}$ x Temperature Rise °F
Heating air with steam coils	Lbs./hr. Condensate = $\frac{CFM}{900}$ x Temperature Rise °F
Radiation conversion	Lbs./hr. Condensate = $\frac{\text{sq. ft. EDR}}{4}$
Heating liquids other than water with steam	Lbs./hr. Condensate = $\frac{(R) \times (W) \times (\Delta T) \times (H)}{1,000}$
	where:
	 (R) = Rate of flow of fluid to be heated (gal./hr.) (W) = Weight of fluid (lbs./hr.) (ΔT) = Fluid temperature rise °F (H) = Specific heat of fluid being heated (BTU/lb./°F)
Cv (valve coefficient) for steam, when:	When $P_2 \le 0.5 P_1$:
P1 = Inlet pressure in psia	$C_v = $ _lbs./hr
	1.5 x P1
P ₂ = Outlet pressure in psia	When $P_2 > 0.5 P_1$:
P = Pressure drop (P1 - P2)	$C_v = lbs./hr.$
	$2.1\sqrt{\Delta P \times (P_1 + P_2)}$
Cv (valve coefficient) for liquid	$C_v = \frac{\text{GPM } \sqrt{\text{specific gravity}}}{\sqrt{\text{Pressure drop}}}$
Steam Velocity	$V = 2.4 \text{ x } \frac{\text{Steam flow (lbs./hr.) x specific volume (ft^3/lbs.)}}{\text{Area of pipe (in.)}}$

Conversion Factors:

Multiply	Ву	To Get
Boiler hp	33,475	BTU/hr.
Boiler hp	34.5	Lbs./hr/ steam at 0 psig
Boiler hp	140	Sq. ft. EDR
1000 sq. ft EDR	0.5	GPM condensate
EDR (sq. ft.)	0.25	Lbs./hr. condensate
EDR (sq. ft.)	240	BTU/hr. for 2 psig steam filling radiator with 70°F air surrounding radiator
lbs./hr.	960	BTU/hr.
lbs./in. ²	2.307	Feet water column (cold)
lbs./in. ²	2.41	Feet water column (hot)
lbs./in. ²	2.036	in. Hg
lbs./in. ²	0.069	bar
lbs. steam / hr.	0.454	kg. steam / hr.