

#### Media

Behringer® MAX-Wind<sup>TM</sup> WP Series Wound Polypropylene Depth Filter Cartridges offer superior filtration for process applications. Manufactured from industrial-grade polypropylene material, these inexpensive cartridges are an excellent match for a variety of industrial fluids, as well as organic solvents and edible oils. Utilizing an advanced computercontroled manufacturing process, Behringer Process Filtration's string-wound cartridges are able to achieve a true graded-density media layer. This preciselypatterned fiber structure creates a consistently reliable media with expanded void volume, creating a cartridge that performs with a gradual pressure increase over the life of the cartridge, rather than the abrupt flow cutoff typical of competitor's cartridges. MAX-Wind<sup>TM</sup> cartridges are similar to our ECO-Wind™ cartridges in materials and craftsmanship, but add HVV<sup>TM</sup> technology. HVV<sup>™</sup> is a precise patterning process that creates a higher void volume area in the graded density depth filter media. This allows for a higher dirt-holding capacity, higher efficiencies, and better dirt-unloading properties. HVV<sup>TM</sup> filter cartridges typically yield dirtholding capacities double that of conventional wound cartridges. Construction of the MAX-Wind™WP series filter cartridges is done using all Polypropylene materials, which have a high resistance in many chemical applications.

# BEIRINGER® MAX-Wind<sup>TM</sup> WP

String-Wound Polypropylene HVV<sup>TM</sup> Depth Filter Cartridges

## Extended Filtration Efficiencies Industrial Grade

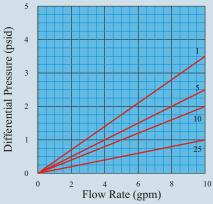
#### Performance:

Max Differential Pressure: 60 psid (3.5 bar) Recommended Change Out: 25 psid (1.75 bar)

Filtration Rating: 0.5, 1, 3, 5, 10, 20 (Micron sizes) 25, 30, 50, 75, 100, 200, 250, 400

#### Features and Benefits

- •Graduated Density  $HVV^{TM}$  Technology provides higher void volume resulting in longer life, higher efficiencies, and lower pressure drops.
- $\bullet HVV^{^{TM}}$  cartridges have more than double the dirt-holding capacity of standard wound cartridges.
- •Offered in a wide variety of lengths from 4 in. To 50 in., With diameters ranging from 1.5 in to 4.5 in.
- •Core covers, core extenders, and various different end cap configurations are available to make installation simple in any manufacturer's filter vessel.
- •Core options include 304SS, 316SS, Tin, Extended, and polypropylene snap-in extender.
- •Filter Construction is easily customized because of HVV<sup>TM</sup> computer-aided manufacturing. Application-specific requirements can be easily incorporated.


#### **Typical Applications**

- •Chemicals
- •Consumer Products
- •Beverages
- •Oils
- •Photography Chemicals
- •Plating Solutions
- •Waste Effluent
- •Edible Oils

- •Connectors
- •Petro Chemical
- •Juices
- •Paint/Ink
- Pharmaceuticals
- Process Water
- •Water

#### Flow vs. Pressure Information

Single 10-inch Wound Cotton Cartridge



#### Pressure drop calculation:

Pressure drop curves are based on fluid with viscosity similar to water, and element length of 10 inches. P across the media is proportionally related to viscosity and element length. The formula for calculating different pressure drops is as follows:

New P= P Curve x Viscosity(cSt)/# of 10 in. Lengths<sup>2</sup>

#### **Notes:**

- 1.) Cartridges should not exceed the recommended max flow rate of 10gpm per 10 inch length. All applications differ, and actual flow rates should be determined on an individual basis.
- 2.) Initial pressure drop should be kept as low as possible. Initial pressure drops over 3-4 psid may considerably decrease cartridge life.

#### **Operating Conditions**

#### **Max Operating Temperature:**

180° F (82° C)

#### Max Permissible p:

60 psid (4 bar) @ ambient temp.

#### Recommended Change-Out p:

25 psid (1.75 bar)

#### **Max Recommended Flow Rate:**

10 gpm (37.8 lpm) per 10 in. Length<sup>1</sup>

#### Construction

#### Media:

Wound Polypropylene

#### **End Caps:**

222 O-rings, 226 O-rings, Fins, DOE Caps, Spears, Flat Gaskets, Springs, Core Extenders, Custom

#### **Gasket / O-ring Materials:**

Polyfoam, Buna-N, Viton, Silicone, EPR, Neoprene

#### **Outside Diameter:**

2.5 in. (63.5 mm)

#### **Inside Diameter:**

1.06 in. (27 mm)

#### Nominal Lengths (in):

 $4\frac{3}{4}$ ,  $9\frac{3}{4}$ , 10,  $19\frac{1}{2}$ , 20,  $29\frac{1}{2}$ , 30, 39, 40, 50, 60

Table 1 Table 2 Table 3 Table 4 Table 5 Table 6

### **MWP**

| Length | Table Table      |
|--------|------------------|
| 4.9    | 4.875 in. (half) |
| 9.8    | 9.75 Inch        |
| 10     | 10 Inch (single) |
| 19.5   | 19.5 Inch        |
| 20     | 20 Inch (double) |
| 29.75  | 29.75 Inch       |
| 30     | 30 Inch (triple) |
| 39     | 39 Inch          |
| 40     | 40 Inch (quad)   |
| 50     | 50 Inch          |
|        |                  |

| Core | Table         |
|------|---------------|
| N    | None          |
| P    | Polypropylene |
| T    | 304S/S        |
| S    | 316S/S        |
| C    | 1.56 Steel    |
| D    | 1.22 PP       |
| F    | Glass PP      |
| M    | 1.56 PP       |
| Е    | EPT           |
|      |               |

| I iiti ation | Table      |
|--------------|------------|
| 0.5 micron   | 30 micron  |
| 1 micron     | 50 micron  |
| 3 micron     | 75 micron  |
| 5 micron     | 100 micron |
| 10 micron    | 200 micron |
| 20 micron    | 250 micron |
| 25 micron    | 400 micron |
|              |            |

| Adder | <b>S</b> Tab           | ole 4 |
|-------|------------------------|-------|
| C     | Closed End Cap (1 end) |       |
| 222   | 222 O-ring / Closed    |       |
| 222F  | 222 O-ring / Fin End   |       |
| 226   | 226 O-ring / Closed    |       |
| 226F  | 226 O-ring / Fin End   |       |
| FG    | Flat Gasket / DOE Caps |       |
| CS    | Compression Seal       |       |
| PS    | Polypropylene Spring   |       |
| PCE   | PP Core Extender       |       |
| TCE   | 304 S/S Core Extender  |       |
| SCE   | 316 S/S Core Extender  |       |

| <b>Seals</b> | Table                  |
|--------------|------------------------|
| omit         | None depends on adders |
| E            | EPR                    |
| N            | Neoprene               |
| V            | Viton                  |
| S            | Silicone               |
| В            | Buna-N (Nitrile)       |
| PF           | Polyfoam               |
|              |                        |

| Core | Covers                | Table         |
|------|-----------------------|---------------|
| omit | None                  | npatible      |
| C    | Cover (commaterial to | filter media) |

The information contained in this document is provided as an aid in properly selecting products and/or options. It is intended to be used by technically experienced users for general reference only. The supplier assumes no responsibility or liability for the accuracy or completeness of this document, as well as results obtained by the use of this information. Due to the variety of possible operating conditions, it is highly recommended that the user make their own tests to determine the safety and suitability of all products and combinations thereof. The user is solely responsible for final determination of such conditions.

