Bulletin No. C3800 May 1, 2007

GREEN THREAD Marine-Offshore Piping Systems

Fiber Glass Systems (FGS) combines the resources of Star Fiberglass and Smith Fibercast with five manufacturing facilities in North America and two in the Far East. We offer a real choice in high-performance fiberglass piping for offshore applications.

> GREEN THREAD® Marine-Offshore Piping Systems

GREEN THREAD 175

- Rated to 175 psig/12 bar
- Temperatures up to 230°F/110°C
- Cost-effective, low pressure services

GREEN THREAD 250

- Rated to 250 psig/18 bar
- Temperatures up to 230°F/110°C
- Extra safety factor for critical services
- FIRE RESISTANT
 PIPING SYSTEMS
- CONDUCTIVE
 PIPING SYSTEMS
- 1" 24" Sizes (25mm-600mm)

Product

GREEN THREAD® Offshore piping systems are available in two pressure classes.

GREEN THREAD 175 is rated to 175 psig/12 bar at temperatures up to 230°F/110°C. This system is available with a molded fittings option that provides a cost-effective alternative to filament wound fittings for low pressure service such as drain lines, sewer lines, vent lines and similar applications.

GREEN THREAD 250 is rated to 250 psig/18 bar at temperatures up to 230°F/110°C. This design provides the end user with an extra safety factor for critical services such as offshore fire protection systems and ballast piping applications.

All GREEN THREAD Marine and Offshore pipe products are manufactured with an inner corrosion and erosion barrier that is reinforced to provide maximum resistance to the harsh marine environment. GREEN THREAD Offshore systems are available in sizes from 1" through 24" diameter, with a complete range of filament wound fittings for all sizes and pressure classes. See page 7 for available pipe lengths.

FIRE RESISTANCE

GREEN THREAD 250 and GREEN THREAD 175 systems are fully gualified for IMO Level-3 fire resistance without any passive fire protection required in 2"-24" sizes. In applications such as dry deluge fire protection piping where a higher degree of fire resistance is necessary, GREEN THREAD 250-F is supplied with a unique reinforced "Fire Jacket" that has been fully qualified for modified Level-3 (L-WD) fire resistance in accordance with U.S. Coast Guard PFM 1-98. Pipe protected by the Fiber Glass Systems "Fire Jacket" exhibits zero heat release when tested in accordance with IMO A.653(16). Flammability of the product is so low that it has been exempted from smoke and toxicity test requirements.

CONDUCTIVE PIPING SYSTEMS

GREEN THREAD 250-C and GREEN THREAD 175-C are supplied with conductive carbon fibers as an integral part of the pipe wall in order to provide a uniformly conductive piping system for use in hazardous areas. A specially formulated conductive adhesive ensures conductivity across the joints. Pipe and fittings are also manufactured with a 0.020" (0.5mm) conductive nexus reinforced liner so there is no compromise in performance when choosing the conductive option. Conductive piping is available in all sizes and pressure ratings.

FITTINGS

All GREEN THREAD 250 and 175 fittings are manufactured with the same pressure, temperature, and chemical capabilities as the pipe. GREEN THREAD 175 fittings are available as molded or filament wound in 2" to 6" diameter, filament wound in larger sizes. GREEN THREAD 250 fittings are filament wound in all sizes. All standard fittings are supplied with the conductive option and are also available with the "fire jacket" as required. Filament wound fittings come in long radius (1.5 D) in 1"-6" and standard radius for 8"-24" to accommodate the tight space requirements on most jobs. Long radius 8"-24" fittings are available upon request.

JOINING METHODS

GREEN THREAD 250 and GREEN THREAD 175 use an easily installed socket joint with positive stop up through 12" diameter. Larger diameter pipe and fittings use the tapered joint for optimum pressure and mechanical performance.

This combination of joining systems enables the end user to take advantage of the positive stop feature of the socket joining system in the smaller sizes, while providing maximum joint efficiency and the extra reliability of the tapered joint in the larger sizes.

LIGHT WEIGHT

GREEN THREAD 250 and GREEN THREAD 175 offer considerable weight savings in original design and construction of floating offshore structures or vessels. GREEN THREAD 250 is 1/4 or less the weight of steel. The GREEN THREAD 250-F pipe is 1/2 or less the weight of carbon steel and CuNi piping.

ENGINEERING & DESIGN

Fiber Glass Systems offers complete design and installation assistance for the engineer, the shipbuilder or offshore platform constructor. A complete Engineering and Piping Design Guide, Manual No. E5000, is available upon request. The easy-touse Success by Design engineering software is available at www. smithfibercast.com. FGS Application Engineers can provide up-front layout and system design advice, as well as comprehensive flexibility and stress analyses of piping layouts. FGS pipe and fittings are available in PDMS format.

INSTALLATION

Fiber Glass Systems can provide turnkey solutions worldwide through our certified fabrication network. Local factory support enhances the installation's success. Piping spools can be prefabricated and tested in our factory or at a local fabrication site to minimize on-site installation time, and reduce overall installed costs. When Green Thread Marine-Offshore products are fabricated and installed by FGS or our certified installation contractors. additional warranty terms are available. Consult Manual No. F6300 for proper installation procedures.

MARINE/OFFSHORE Applications

Firewater Systems

Salt Water Supply Lines

Cooling Water

Waste Lines

Potable Water

Process Lines

Ballast Piping

Cargo Lines

Bilge Piping

Sprinkler Systems

Fresh Water Lines

Sanitary Lines

Scuppers

Sounding Tubes

Vent Lines

Drains

Conduit

MARINE-OFFSHORE Piping Systems

PIPE PROPERTIES

General Specifications and Dimensional Data*

GREEN THREAD 175

Nominal Pipe	Nor	ninal	Nominal		Non W	Nominal Wall		ninal ner	Non	ninal		
(In)	I.	D.	0.	D.	Ihickness		Inickness		vveight		Capacity	
(111)	(In)	(mm)	(In)	(mm)	(In)	(mm)	(In)	(mm)	(Lbs/Ft)	(kg/m)	(Ft ³ /Ft)	(L/m)
2	2.15	54.6	2.51	63.7	0.19	4.7	0.02	0.5	0.9	1.34	0.03	2.3
3	3.28	83.3	3.66	93.0	0.19	4.8	0.02	0.5	1.4	2.08	0.06	5.5
4	4.28	108.7	4.66	118.4	0.19	4.8	0.02	0.5	1.8	2.68	0.10	9.3
6	6.35	161.3	6.80	172.7	0.23	5.8	0.02	0.5	3.1	4.61	0.22	20.4
8	8.36	212.3	8.84	224.5	0.24	6.1	0.02	0.5	4.3	6.40	0.38	35.4
10	10.36	263.1	10.93	277.6	0.28	7.1	0.02	0.5	6.0	8.93	0.59	54.4
12	12.28	311.9	12.92	328.2	0.32	8.0	0.02	0.5	8.3	12.35	0.82	76.5
14	14.04	356.6	14.74	374.4	0.35	8.9	0.02	0.5	10.5	15.63	1.08	99.9
16	16.04	407.4	16.82	427.2	0.39	9.9	0.02	0.5	13.3	19.79	1.40	130.3
18	17.83	452.8	18.68	474.5	0.43	10.9	0.02	0.5	16.1	23.96	1.73	161.1
20	19.83	503.6	20.77	527.6	0.47	11.9	0.02	0.5	19.6	29.17	2.15	199.4
24	23.84	605.5	24.94	633.5	0.55	14.0	0.02	0.5	27.9	41.52	3.10	288.0

GREEN THREAD 250

Nominal Pipe Size	Nominal I.D. (In) (mm)		Nominal O.D.		Nominal Wall Thickness		Nominal Liner Thickness		Nominal Weight		Capacity	
(In)	(In)	(mm)	(In)	(mm)	(In)	(mm)	(ln) (mm)		(Lbs/Ft) (kg/m)		(Ft ³ /Ft)	(L/m)
1	1.00	25.0	1.33	34.0	0.16	4.2	0.02	0.5	0.4	0.59	0.005	0.51
1 1⁄2	1.50	38.1	1.96	49.8	0.21	5.4	0.02	0.5	0.8	1.19	0.012	1.14
2	2.15	54.6	2.51	63.7	0.19	4.7	0.02	0.5	0.9	1.34	0.03	2.3
3	3.28	83.3	3.66	93.0	0.19	4.8	0.02	0.5	1.4	2.08	0.06	5.5
4	4.28	108.7	4.66	118.4	0.19	4.8	0.02	0.5	1.8	2.68	0.10	9.3
6	6.35	161.3	6.80	172.7	0.23	5.8	0.02	0.5	3.1	4.61	0.22	20.4
8	8.36	212.3	8.95	227.3	0.30	7.6	0.02	0.5	5.3	7.89	0.38	35.4
10	10.36	263.1	11.06	280.9	0.35	8.9	0.02	0.5	7.8	11.61	0.59	54.4
12	12.28	311.9	13.09	332.5	0.41	10.4	0.02	0.5	10.7	15.92	0.82	76.5
14	14.04	356.6	14.94	379.5	0.46	11.7	0.02	0.5	13.7	20.39	1.08	99.9
16	16.04	407.4	17.07	433.6	0.52	13.2	0.02	0.5	17.6	26.19	1.40	130.3
18	17.83	452.8	18.96	481.6	0.57	14.5	0.02	0.5	21.5	32.00	1.73	161.1
20	19.83	503.6	21.08	535.4	0.62	15.7	0.02	0.5	26.3	39.14	2.15	199.4
24	23.84	605.5	25.31	642.9	0.74	18.8	0.02	0.5	37.5	55.81	3.10	288.0

* All values are nominal. Tolerances or maximum/minimum limits can be obtained from Fiber Glass Systems

ENGINEERING DATA

Nor Pipe	ninal 9 Size	Fiber Glass Systems Pressure Rating		UKOAA/DEP Nom. Pressure Rating ⁽¹⁾		Vacuum/External Pressure @Ambient Temperature ⁽²⁾				
				- Nau	ng. /	Ultimate Colla	nate Collapse Pressure Rated Pressure		Pressure	
(In)	(mm)	(psig)	(bar)	(psig)	(bar)	(psig)	(bar)	(psig)	(bar)	
2	50	175	12	1180	81	>1700	>117	>563	>38.8	
3	80	175	12	851	59	855	59.0	210	14.5	
4	100	175	12	660	45	305	21.0	96	6.6	
6	150	175	12	550	38	175 12.1		55	3.8	
8	200	175	12	435	30	85 5.9		28	1.9	
10	250	175	12	426	29	80	5.5	26	1.8	
12	300	175	12	400	28	75	5.2	24	1.7	
14	350	175	12	400	28	75	5.2	23	1.6	
16	400	175	12	400	28	70	4.8	23	1.6	
18	450	175	12	400	28	70	4.8	22	1.5	
20	500	175	12	400	28	70 4.8 22			1.5	
24	600	175	12	400	28	70	4.8	22	1.5	

GREEN THREAD 175, 175-C

GREEN THREAD 250, 250-C, 250-F, 250-CF

Non Pipe	ninal Size	Fiber Gla Pressu	ass Systems ure Rating	UKOA Nom. P Rati	A/DEP ressure ing ⁽¹⁾		Vacuum/Extern @Ambient Ter	nal Pressure mperature ⁽²⁾	
						Ultimate Colla	pse Pressure	Rated	Pressure
(In)	(mm)	(psig)) (bar) (psig) (bar)		(psig)	(bar)	(psig)	(bar)	
1	25	250	18	2400	167	>3000	>210	>1000	>70
11⁄2	40	250	18	1960	135	>3000	>210	>1000	>70
2	50	250	18	1180	81	>1700	>117	>563	>38.8
3	80	250	18	851	59	855	59.0	210	14.5
4	100	250	18	660	45	305	21.0	96	6.6
6	150	250	18	550	38	175	12.1	55	3.8
8	200	250	18	550	38	175	12.1	55	3.8
10	250	250	18	550	38	175	12.1	55	3.8
12	300	250	18	550	38	175	12.1	55	3.8
14	350	250	18	550	38	175	12.1	55	3.8
16	400	250	18	550	38	175	12.1	55	3.8
18	450	250	18	550	38	175	12.1	55	3.8
20	500	250	18	550	38	175	12.1	55	3.8
24	600	250	18	550	38	175	12.1	55	3.8

(1) Piping Design per DEP13.40.10.19-Dec. 1998/UKOOA Calculated at 200°F for a 25 year design live. (2) Long term rating incorporating the DEP Safety Factor of 3.0

For properties of products larger than 24", contact the manufacturer.

Typical Physical Properties

	Valu	e (psi)	Value (I	MPa)
Property	@ 75⁰F	@ 200°F	@ 24ºC	@ 93ºC
Axial Tensile - ASTM D2105 Ultimate Stress Design Stress Modulus of Elasticity	10,550 2,637 1.61 x 10 ⁶	7,680 1,920 1.16 x 10 ⁶	71 17.8 12411	52.9 13.2 7997
Poisson's Ratio	0	.38	0.3	8
Axial Compression - ASTM D695 Ultimate Stress Design Stress Modulus of Elasticity	33,300 8,300 1.26 x 10 ⁶	20,383 5,090 0.66 x 10 ⁶	230.0 57.4 8687	140.5 35.1 4550
Beam Bending - ASTM D2925 Ultimate Stress Design Stress ⁽¹⁾ Modulus of Elasticity (long-term)	23,000 2,900 2.18 x 10 ⁶	17,166 2,145 1.29 x 10 ⁶	159 20.0 15031	118.3 14.8 8894
Hydrostatic Burst - ASTM D1599 Ultimate Hoop Tensile Stress	46,300	47,990	319	330
Hydrostatic Design - ASTM D2992 Procedure A - Hoop Tensile Stress Cyclic 150 x 10 ⁶ Cycles LTHS Procedure B - Hoop Tensile Stress LTHS Static 20 Year Life at 200°F	8,850	6,090 16,945 14,654	61.0	41.9 116.8 101.0
Coefficient of Linear Thermal Expansion ASTM D696	1.26 x 1	0⁻⁵ in/in/ºF	2.27 x 10⁵ n	nm/mm/⁰C
Thermal Conductivity	0.23 BTU	l/(ft)(hr)(°F)	0.4 W/(r	n)(°C)
Specific Gravity - ASTM D792	1	1.8	1.8	3
Flow Factor - SF Hazen-Williams Coefficient	1	50	150)

(1) Beam bending design stress is 1/8 of ultimate to account for combined stress (i.e. bending and pressure).

Properties of Pipe Sections based on Minimum Reinforced Wall

Pipe	Mi	nimum Cross S	ectional Area (I	n²)	Ν	/linimum Mome	nt of Inertia (In	¹)
Size	GREEN TH	IREAD 175	GREEN TH	Minimum Moment of Inertia (In4)GREEN THREAD 250GREEN THREAD 175GREEN THREAD 2(In2)(mm2)(In4)(mm4x105)(In4)(mm4x0.5303 0.5 0.080.30.9592All 1"-6" pipe is supplied as GT250 and is utilized in all GT 175 applications.0.72.32.113555.3211.9826.5416848.220160.3249.762581084491395	IREAD 250			
(In)	(In²)	(mm²)	(ln²)	(mm²)	(In⁴)	(mm⁴x10⁵)	(In ⁴)	(mm⁴x10⁵)
1			0.5	303			0.08	0.34
11⁄2			0.9	592			0.34	1.41
2	All 1"-6" pipe	e is supplied	1.0	666	All 1"-6" pipe	e is supplied	0.7	2.93
3	in all GT175	applications.	1.6	1052	all GT 175 a	applications.	2.5	10.2
4			2.1	1355			5.3	21.9
6			3.7	2387			19.9	82.8
8	5.2	3368	6.5	4168	48.2	201	60.3	251
10	7.6	4923	9.7	6258	108	449	139	577
12	10.2	6581	13.4	8645	203	845	269	1120
14	13.1	8452	17.3	11161	337	1400	452	1880
16	16.7	10774	22.4	14452	563	2340	763	3180
18	20.3	13097	27.4	17677	845 3520		1,155	4810
20	24.8	16000	33.7	21742	1,276	5310	1,755	7300
24	35.5	22903	48.2	31097	2,633	11000	3,623	15100

MARINE-OFFSHORE Piping Systems

Metric Conversions

1 gal/min	=	3.785412 L/min
1 psig/100 ft	=	0.226206 bar/100m

ASTM D2996 Designation Codes

1" - 11/2"	RTRP-11FF1-3111
2" - 8"	RTRP-11FF1-3112
10"	RTRP-11FF1-3114
12" - 24"	RTRP-11FF1-3116

		Available Pip	e Lengths*						
		Amer	icas	Asia					
(in)	(mm)	(ft)	(m)	(ft)	(m)				
1 25 18, 13 5.5, 4.0 13 4.0									
1.5	40	18, 14	5.5, 4.3	14, 28.25	4.3, 8.6				
2-12	50-300	19.25, 39.5	5.9, 12.0	28.25	8.6				
14-16	350-400	19.25, 39.0	5.9, 11.9	27.5	8.4				
18-24 450-600 19.25, 39.5 5.9, 12.0 24.0 7.3									
*Lengths are	not necessaril	y exact unless s	pecified on ord	ler.					

SUPPORTS

The following engineering analysis must be performed to determine the maximum support spacing for the piping system. Proper pipe support spacing depends on the temperature and weight of the fluid carried in the pipe. The support spacing is calculated using continuous beam equations and the pipe bending modulus derived from long-term beam bending tests. The following tables were developed to ensure a design that limits beam mid-span deflection to 1/2 inch and bending stresses to less than or equal to 1/8 of the ultimate bending stress. Any additional weight on the piping system such as insulation or heat tracing requires further consideration. Restrained (anchored) piping systems operating at elevated temperatures often result in guide spacing requirements that are more stringent than simple unrestrained piping systems. In this case, the maximum guide spacing will dictate the support/guide spacing requirements for the system. Pipe support spans at changes in direction require special attention. Supported and unsupported fittings at changes in direction are considered in the following tables and must be followed to properly design the piping system.

There are seven basic rules to follow when designing piping system supports, anchors, and guides:

- 1 Do not exceed the recommended support span.
- 2 Support valves and heavy in-line equipment independently. This applies to both vertical and horizontal piping.
- 3 Protect pipe from external abrasion.
- 4 Avoid point contact loads.
- 5 Avoid excessive bending. This applies to handling, transporting, initial layout, and final installed position.
- 6 Avoid excessive vertical run loading. Vertical loads should be supported sufficiently to minimize bending stresses at outlets or changes in direction.
- 7. Provide adequate axial and lateral restraint to ensure line stability during rapid changes in flow.

P	ipe			70°F		200°F				
s	lize	GREEN TH	READ 175	GREEN THRE	AD 250/250-F	GREEN TH	READ 175	GREEN THRE	AD 250/250-F	
(ln.)	(mm)	(ft.)	(m)	(ft.)	(m)	(ft.)	(m)	(ft.)	(m)	
1	25			12.8	3.9			11.2	3.4	
1½	40			15.2	4.6]		13.3	4.1	
2	50	All 1"-6" pipe	e is supplied	16.2	5.0	All 1"-6" pipe	e is supplied	14.2	4.3	
3	80	in all GT 175	applications.	18.6	5.7	in all GT175	applications.	16.3	5.0	
4	100			20.0	6.1			17.5	5.3	
6	150			23.1	7.0			20.2	6.2	
8	200	25.4	7.7	26.6	8.1	22.3 6.8		23.4	7.1	
10	250	28.0	8.5	29.5	9.0	24.5	7.5	25.9	7.9	
12	300	30.1	9.2	32.0	9.8	26.4	8.1	28.1	8.6	
14	350	32.0	9.8	34.1	10.4	28.1	8.6	29.9	9.1	
16	400	34.1	10.4	36.4	11.1	29.9	9.1	31.9	9.7	
18	450	35.8	10.9	38.3	11.7	31.4	9.6	33.6	10.2	
20	500	37.7	11.5	40.4	12.3	33.1	10.1	35.4	10.8	
24	600	41.2	12.6	44.2	13.5	36.1	11.0	38.7	11.8	

Maximum Support Spacing @ 75°F & 200°F

Support Spacing vs. Specific Gravity

Specific Gravity	2.00	1.50	1.25	1.00	0.75
Multiplier	0.85	0.92	0.95	1.00	1.07

Example: 6" GREEN THREAD 175 pipe @ 200° F with 1.5 specific gravity fluid, maximum support spacing = $20.3 \times 0.92 = 18.7$ ft.

Piping Span Adjustment Factors With <u>Unsupported</u> Fitting at Change in Direction

Piping Span Adjustment Factors With <u>Supported</u> Fitting at Change in Direction

THERMAL EXPANSION

The effects of thermal gradients on piping systems may be significant and should be considered in every piping system stress analysis. Pipe line movements due to thermal expansion or contraction may cause high stresses or even buckle a pipe line if improperly restrained. Several piping system designs are used to manage thermal expansion and contraction in above ground piping systems. They are listed below according to economic preference:

- 1. Use of inherent flexibilities in directional changes
- 2. Restraining axial movements and guiding to prevent buckling
- 3. Use expansion loops to absorb thermal movements
- 4. Use mechanical expansion joints to absorb thermal movements

To perform a thermal analysis the following information is required:

- 1. Isometric layout of piping system
- 2. Physical and material properties of pipe
- 3. Design temperatures
- 4. Installation temperature (Final tie in temperature)
- 5. Terminal equipment load limits
- 6. Support movements

A comprehensive review of temperature effects on fiberglass pipe may be found in Smith Fibercast's "Engineering and Piping Design Guide", Manual No. E5000, Section 3.

BRANCHING TABLES

GREEN THREAD 175

	GRE	EN 1	HRE	EAD	175			Main L	ine						
		2	3	4	6	8	10	12	14	16	18	20	24	30	36
	2	Т	RT	RT	ORT	ORT	0	0	0	0	0	0	0	0	0
	3		Т	RT	RT	ORT	0	0	0	0	0	0	0	0	0
P	4			Т	RT	RT	ORT	0	0	0	0	0	0	0	0
lete	6				Т	RT	RT	ORT	0	0	0	0	0	0	0
an	8					Т	RT	RT	RT	RT	RT	RT	RT	RT	RT
Ō	10						Т	RT	RT	RT	RT	RT	RT	RT	RT
ch	12							Т	RT	RT	RT	RT	RT	RT	RT
an	14								Т	RT	RT	RT	RT	RT	RT
B	16									Т	RT	RT	RT	RT	RT
	18										Т	RT	RT	RT	RT
	20											Т	RT	RT	RT
	24												Т	RT	RT

GREEN THREAD 250

Main Line

		2	3	4	6	8	10	12	14	16	18	20	24	30	36
Branch Diameter	1	RT	ORT	ORT	ORT	ORT	0	0	0	0	0	0	0	0	0
	11/2	RT	RT	ORT	ORT	ORT	0	0	0	0	0	0	0	0	0
	2	Т	RT	RT	ORT	ORT	0	0	0	0	0	0	0	0	0
	3		Т	RT	RT	ORT	0	0	0	0	0	0	0	0	0
	4			Т	RT	RT	ORT								
	6				Т	RT									
	8					Т	RT								
	10						Т	RT							
	12							Т	RT						
	14								Т	RT	RT	RT	RT	RT	RT
	16									Т	RT	RT	RT	RT	RT
	18										Т	RT	RT	RT	RT
	20											Т	RT	RT	RT
	24												Т	RT	RT

O - Outlet Saddle

ORT - Outlet Saddle or Reducing Tee

TESTING

Hydrostatic testing should be performed to evaluate the structural integrity of a new piping system installation. Experience has shown that testing to 1.5 times the anticipated maximum operating pressure of a system provides a high degree of confidence in the piping system. In no case should the test pressure exceed 1.5 times the maximum pressure rating of any component in the piping system.

Testing should not be undertaken until all permanent supports, anchors and guides are properly installed according to the engineering design specifications. Do not attempt to pressure test a system supported by ropes, wooden blocks or other temporary support apparatus.

When hydro testing open vents to prevent entrapment

of air in lines as the system is slowly filled with water. Then the vents should be closed and the system slowly pressurized to the test pressure. Allow the system to stabilize for 15-30 minutes, then, inspect the system for leaks. Upon completion of hydro test, relieve the pressure on the system slowly, open vents and any drains to allow for complete drainage of the system. If a flange connection leak occurs do not attempt to re-torque bolts while the system is pressurized. The hydro test should be repeated after any re-work is performed.

Examples of other test procedures are discussed in the Fiber Glass Systems Marine-Offshore Pipe Installation Handbook, Manual No. F6300.

OTHER CONSIDERATIONS

Water (Fluid) Hammer

A pressure surge will occur when fluid flow in a piping system is abruptly changed during events such as rapid pump startup or a quick closing valve. This surge can be significantly reduced by controlling pump startup and valve closure rates.

The maximum pressure surge in psi caused by water hammer can be calculated by multiplying the fluid velocity in ft/sec times the constant listed in the "Fluid (Water) Hammer Constants" Table. The peak pressure for the system will equal the water hammer surge <u>plus</u> the operating pressure at the time the water hammer occurred.

Fluid (Water) Hammer Constants⁽¹⁾

Nominal Pipe Size	Constants						
(In)	GREEN THREAD 175	GREEN THREAD 250					
1	-	45					
1½	-	44					
2	37	37					
3	33	33					
4	29	29					
6	27	27					
8	25	27					
10	24	27					
12	24	27					
14	24	27					
16	23	27					
18	23	27					
20	24	27					
24	23	27					

⁽¹⁾Constants are valid for water at 75°F.

MARINE-OFFSHORE Piping Systems

It is the policy of Fiber Glass Systems to improve its products continually. In accordance with that policy, the right is reserved to make changes in specifications, descriptions, and illustrative material contained in this bulletin as conditions warrant. Always cross-reference the bulletin date with the most current version listed at http://www.fgspipe.com. The information contained herein is general in nature and is not intended to express any warranty of any type whatsoever, nor shall any be implied.

2700 West 65th Street • Little Rock, Arkansas 72209-8592 • Telephone (501) 568-4010 • Fax (501) 568-4465

25 South Main St. • Sand Springs, Oklahoma 74063 • Telephone (918) 245-6651 • Fax (918) 245-7566

Litanghe Road • Xiangcheng Economic Development Zone • Suzhou, China 215131 • Telephone: 86-512-85180099

http://www.fgspipe.com