BPX Brazed Plate Heat Exchangers.
Smaller. Lighter. Stronger.
More Efficient.

Bell & Gossett Brazed Plate Heat Exchangers are ideal for residential and light commercial hydronic systems because they provide maximum heat dissipation from a compact, lightweight heat exchanger. Unlike conventional shell and tube heat exchangers, our units can be used even in applications where space is at a premium. Their efficient design allows them to provide more heat transfer using less space, making them well suited to a variety of installations, including:
- radiant floors.
- snow melt.
- domestic hot water.
- pool heating.

Superior heat transfer.
The BPX Brazed Plate Heat Exchangers offer the highest level of thermal efficiency and durability in a compact, low cost unit. The corrugated plate design provides very high heat transfer coefficients, resulting in a more compact design. The unit’s stainless steel plates are vacuum brazed together to form a durable, integral piece that can withstand high pressure and temperature.

Compared to shell and tube exchangers, the BPX Heat Exchangers offer a more compact design:
- 1/6 the size
- 1/5 the weight
- 1/8 the liquid required
- 1/3 to 1/5 of the surface area required

Bell & Gossett Brazed Plate Heat Exchangers are ideal for residential and light commercial hydronic systems because they provide maximum heat dissipation from a compact, lightweight heat exchanger. Unlike conventional shell and tube heat exchangers, our units can be used even in applications where space is at a premium. Their efficient design allows them to provide more heat transfer using less space, making them well suited to a variety of installations, including:
- radiant floors.
- snow melt.
- domestic hot water.
- pool heating.

Superior heat transfer.
The BPX Brazed Plate Heat Exchangers offer the highest level of thermal efficiency and durability in a compact, low cost unit. The corrugated plate design provides very high heat transfer coefficients, resulting in a more compact design. The unit’s stainless steel plates are vacuum brazed together to form a durable, integral piece that can withstand high pressure and temperature.

Compared to shell and tube exchangers, the BPX Heat Exchangers offer a more compact design
- 1/6 the size
- 1/5 the weight
- 1/8 the liquid required
- 1/3 to 1/5 of the surface area required

The BPX Brazed Plate Heat Exchangers offer the highest level of thermal efficiency and durability in a compact, low cost unit. The corrugated plate design provides very high heat transfer coefficients, resulting in a more compact design. The unit’s stainless steel plates are vacuum brazed together to form a durable, integral piece that can withstand high pressure and temperature.

Compared to shell and tube exchangers, the BPX Heat Exchangers offer a more compact design

- 1/6 the size
- 1/5 the weight
- 1/8 the liquid required
- 1/3 to 1/5 of the surface area required

USA
Bell & Gossett
175 Standard Parkway
Cheektowaga, NY 14227
Phone: 800-447-7700
FAX: 716-862-4176
www.bellgossett.com

THE ITT ENGINEERED BLOCKS SYMBOL AND “ENGINEERED FOR LIFE” ARE REGISTERED TRADEMARKS OF ITT INDUSTRIES. © 2005 PRINTED IN U.S.A. 9/05
RADIANT FLOOR HEATING — SECTION SCHEDULE BASIS

<table>
<thead>
<tr>
<th>Model</th>
<th>Btu/hr</th>
<th>Water Suppl'y</th>
<th>Return</th>
<th>Melt Temp</th>
<th>Flow Drop</th>
<th>Pressure Drop</th>
<th>Material</th>
<th>Size</th>
<th>FR</th>
<th>POS</th>
<th>SS</th>
<th>GPM</th>
<th>PSI</th>
<th>Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP410-10</td>
<td>3,000</td>
<td>100°F</td>
<td>80°F</td>
<td>45°C</td>
<td>0.25</td>
<td>0.5</td>
<td>Copper</td>
<td>1/2"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>0.9</td>
<td>7.5</td>
<td>0.6</td>
</tr>
<tr>
<td>BP410-15</td>
<td>6,000</td>
<td>150°F</td>
<td>90°F</td>
<td>66°C</td>
<td>0.5</td>
<td>1</td>
<td>Copper</td>
<td>3/4"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>1.0</td>
<td>15.0</td>
<td>1.2</td>
</tr>
<tr>
<td>BP410-20</td>
<td>9,000</td>
<td>200°F</td>
<td>100°F</td>
<td>80°C</td>
<td>0.75</td>
<td>1.5</td>
<td>Copper</td>
<td>1"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>1.0</td>
<td>22.5</td>
<td>1.8</td>
</tr>
<tr>
<td>BP410-30</td>
<td>12,000</td>
<td>300°F</td>
<td>190°F</td>
<td>121°C</td>
<td>1.0</td>
<td>2</td>
<td>Copper</td>
<td>1-1/4"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>1.0</td>
<td>30.0</td>
<td>2.4</td>
</tr>
</tbody>
</table>

SNOW MELT — SECTION SCHEDULE BASIS

<table>
<thead>
<tr>
<th>Model</th>
<th>Btu/hr</th>
<th>Water Suppl'y</th>
<th>Return</th>
<th>Melt Temp</th>
<th>Flow Drop</th>
<th>Pressure Drop</th>
<th>Material</th>
<th>Size</th>
<th>FR</th>
<th>POS</th>
<th>SS</th>
<th>GPM</th>
<th>PSI</th>
<th>Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP410-10</td>
<td>3,000</td>
<td>100°F</td>
<td>80°F</td>
<td>45°C</td>
<td>0.25</td>
<td>0.5</td>
<td>Copper</td>
<td>1/2"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>0.9</td>
<td>7.5</td>
<td>0.6</td>
</tr>
<tr>
<td>BP410-15</td>
<td>6,000</td>
<td>150°F</td>
<td>90°F</td>
<td>66°C</td>
<td>0.5</td>
<td>1</td>
<td>Copper</td>
<td>3/4"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>1.0</td>
<td>15.0</td>
<td>1.2</td>
</tr>
<tr>
<td>BP410-20</td>
<td>9,000</td>
<td>200°F</td>
<td>100°F</td>
<td>80°C</td>
<td>0.75</td>
<td>1.5</td>
<td>Copper</td>
<td>1"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>1.0</td>
<td>22.5</td>
<td>1.8</td>
</tr>
<tr>
<td>BP410-30</td>
<td>12,000</td>
<td>300°F</td>
<td>190°F</td>
<td>121°C</td>
<td>1.0</td>
<td>2</td>
<td>Copper</td>
<td>1-1/4"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>1.0</td>
<td>30.0</td>
<td>2.4</td>
</tr>
</tbody>
</table>

CONSTRUCTION CODES

- UL, CRN, and ASME Code Stamp.
- Connections: Flanged and Sweat connections available.
- Brazing material: Copper.
- Cover plates: ASTM 316L Stainless Steel.
- Connections: ASTM 316L Stainless Steel.
- Brazing process: Use the brazing process to ensure maximum efficiency.
- Corrosion-resistant materials ensure a long operating life.

DOMESTIC WATER — SECTION SCHEDULE BASIS

<table>
<thead>
<tr>
<th>Model</th>
<th>Btu/hr</th>
<th>Water Suppl'y</th>
<th>Return</th>
<th>Melt Temp</th>
<th>Flow Drop</th>
<th>Pressure Drop</th>
<th>Material</th>
<th>Size</th>
<th>FR</th>
<th>POS</th>
<th>SS</th>
<th>GPM</th>
<th>PSI</th>
<th>Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP410-10</td>
<td>3,000</td>
<td>100°F</td>
<td>80°F</td>
<td>45°C</td>
<td>0.25</td>
<td>0.5</td>
<td>Copper</td>
<td>1/2"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>0.9</td>
<td>7.5</td>
<td>0.6</td>
</tr>
<tr>
<td>BP410-15</td>
<td>6,000</td>
<td>150°F</td>
<td>90°F</td>
<td>66°C</td>
<td>0.5</td>
<td>1</td>
<td>Copper</td>
<td>3/4"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>1.0</td>
<td>15.0</td>
<td>1.2</td>
</tr>
<tr>
<td>BP410-20</td>
<td>9,000</td>
<td>200°F</td>
<td>100°F</td>
<td>80°C</td>
<td>0.75</td>
<td>1.5</td>
<td>Copper</td>
<td>1"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>1.0</td>
<td>22.5</td>
<td>1.8</td>
</tr>
<tr>
<td>BP410-30</td>
<td>12,000</td>
<td>300°F</td>
<td>190°F</td>
<td>121°C</td>
<td>1.0</td>
<td>2</td>
<td>Copper</td>
<td>1-1/4"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>1.0</td>
<td>30.0</td>
<td>2.4</td>
</tr>
</tbody>
</table>

SWIMMING POOL — SECTION SCHEDULE BASIS

<table>
<thead>
<tr>
<th>Model</th>
<th>Btu/hr</th>
<th>Water Suppl'y</th>
<th>Return</th>
<th>Melt Temp</th>
<th>Flow Drop</th>
<th>Pressure Drop</th>
<th>Material</th>
<th>Size</th>
<th>FR</th>
<th>POS</th>
<th>SS</th>
<th>GPM</th>
<th>PSI</th>
<th>Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP410-10</td>
<td>3,000</td>
<td>100°F</td>
<td>80°F</td>
<td>45°C</td>
<td>0.25</td>
<td>0.5</td>
<td>Copper</td>
<td>1/2"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>0.9</td>
<td>7.5</td>
<td>0.6</td>
</tr>
<tr>
<td>BP410-15</td>
<td>6,000</td>
<td>150°F</td>
<td>90°F</td>
<td>66°C</td>
<td>0.5</td>
<td>1</td>
<td>Copper</td>
<td>3/4"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>1.0</td>
<td>15.0</td>
<td>1.2</td>
</tr>
<tr>
<td>BP410-20</td>
<td>9,000</td>
<td>200°F</td>
<td>100°F</td>
<td>80°C</td>
<td>0.75</td>
<td>1.5</td>
<td>Copper</td>
<td>1"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>1.0</td>
<td>22.5</td>
<td>1.8</td>
</tr>
<tr>
<td>BP410-30</td>
<td>12,000</td>
<td>300°F</td>
<td>190°F</td>
<td>121°C</td>
<td>1.0</td>
<td>2</td>
<td>Copper</td>
<td>1-1/4"</td>
<td>1</td>
<td>NPT</td>
<td>0.5</td>
<td>1.0</td>
<td>30.0</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Small size. Big impact.

Designed for dependability.

By using a brazing process we eliminated the need for gasketed or rolled joints commonly found in traditional construction. This allows for higher operating pressures and temperatures with no maintenance and no leaks. The corrugated plates easily handle highly viscous fluids, turbulating them for maximum efficiency. Corrosion-resistant materials ensure a long operating life.

Mechanical Design:

- Design pressures up to 435 psig.
- Maximum design temperature up to 195°F.
- Minimum design temperature to -30°F.

Construction Codes:

- Available codes include UL, CRN, and ASME Code Stamp.

Materials:

- Stainless Steel 316L plates. Copper brazed material.

Capacity:

- Up to 800 GPM and 350 sq. ft. of surface area.

Mounting:

- Reduce mounting costs with optional threaded studs or integral mounting bracket.

Connections:

- From 1/2 inch to 4 inch. Standard connection options include NPT, SAE, Flanged and Sweat. Custom connections available.

* Consult your local B&G Representative for more detailed sizing and selection information.
Small size. Big impact.

Mechanical Design:
Design pressures up to 435 psig. Maximum design temperature up to 450°F. Minimum design temperature to -310°F.

Mounting:
Reduce mounting costs with optional threaded studs or integral mounting bracket.

Connections:
From 1/2 inch to 4 inch. Standard connection options, include NPT, SAE Flanged and Sweat. Custom connections available.

Materials:
Stainless Steel 316L plates. Copper brazed material.

Capacity:
Up to 800 GPM and 350 Sq. ft. of surface area.

Designed for dependability.
By using a brazing process we eliminated the need for gasketed or rolled joints commonly found in traditional exchangers. This allows for higher operating pressures and temperatures with no maintenance and no leaks. The corrugated plates easily handle viscous fluids, turbulating them for maximum efficiency. Corrosion-resistant materials ensure a long operating life.

Construction Codes:
Available codes include UL, CRN, and ASME Code Stamp.

Selection Tables*