RCI200 Range **Established Leaders** in Actuation Technology ## **Rotork Actuators – Quality Controlled** Since the company was founded in 1957, Rotork has become the standard for excellence in the field of valve and damper automation for the oil, gas, power, water and waste treatment industries around the world. As established leaders in actuation technology, we owe our success to a commitment to quality at every stage, and at every level, of Rotork's operations. At the heart of the company is an exceptional workforce – the highly trained, forward thinking engineers, technicians, and sales support staff who each play a crucial role in maintaining Rotork's unrivaled reputation for innovation, reliability and first class after sale support. With several fluid power factories and additional Centres of Excellence located around the globe, we are able to offer creative solutions and design systems for virtually any application – from subsea hydraulics to the most sophisticated yet simple fluid power control system. Contact Rotork for your operational or safety application requirements. We will work with you from conception, to design, to manufacture, to installation, and finally to maintenance and service support. ### Remote Control Range RCI200 Compact Scotch-Yoke Actuators The Rotork Fluid Systems RCI200 pneumatic actuator features a modern scotch-yoke mechanism that provides high start- and end-torque output in a very compact package. It is available in both double-acting and spring-return configurations with an optional integral manual override. Spring-return actuators feature springs that are safely contained within an epoxy coated cartridge. Pistons are guided in two places by high-performance bearings which ensure proper alignment and long seal life. Adjustable travel stops are available in both directions. RCI200 actuators have the lowest weight and the smallest external dimensions of any actuator with an equivalent torque output. This yields a compact and light yet robust valve / actuator package, particularly when a manual override solution is required. Another benefit is that they have less stroke volume than comparable rack and pinion actuators, providing a significant saving in the use of compressed air. #### Quality RCI200 actuators are manufactured under strict quality control in an ISO 9001 / 14000 environment. They comply with all standard international requirements and are CE marked according to PED and ATEX. We use only top-quality materials in a precisely engineered and manufactured product so our actuators are very long lasting. We are proud to provide a unique three-year warranty. #### **Efficiency** Unlike rack & pinion designs often offered by our competitors, the RCI200 with its scotch-yoke drive gives at least 50% more torque in the end positions, where most valves require it. #### Reliability Every Rotork Fluid Systems actuator is built to provide long and efficient service with a minimum of maintenance. The design, engineering and materials used in their construction ensure optimum performance even in the harshest of environments #### Inside The RCI200 Actuator Operating Pressure: 30-145 psi (2-10 bar) Torque Output: Up to 39,000 lbf-in (4,400 Nm) #### **Temperature Ranges:** | Standard: | -4 to +175 °F | (-20 to +80 °C) | |-----------|----------------|-----------------| | High: | +32 to +300 °F | (0 to +150 °C) | | Low: | -40 to +140 °F | (-40 to +60 °C) | | Arctic: | -52 to +140 °F | (-47 to +60 °C) | #### **Extra Corrosion Protection:** RCT: hard anodise / low friction polymer treatment. Offshore or other finish to meet customer specifications. Stainless screws and drive shaft (standard for RCI210 – 260). #### Standards: Solenoid valve connection: NAMUR. Fitting accessories: VDI/VDE 3845, NAMUR. Fitting to valve: Hole pattern, centering ring ISO 5211, DIN 3337, NAMUR. Stardrive shaft: ISO 5211 with 90° □ and DIN 79 with 45° \diamondsuit and NAMUR. Certified suitable for use at SIL 2 & SIL 3 as a single device in accordance with IEC 61508. #### **Operating Medium:** Air, inert gases (non-dangerous fluids, group 2 according to directive PED 97/23/EC). RCI200 actuators also available for water or oil hydraulics. CE Marking: CE marked according to PED and ATEX. #### **Features and Benefits** - For either on/off and modulating applications. - Lightweight, compact design. - Double-acting and spring-return configurations. - Pre-tensioned springs for safety. - High torque in the end-of-stroke positions. - Connections and mounting according to international standards. - High efficiency, low air consumption. - Housing in anodised aluminium. #### Note on the RCI265 The RCI265 size is an addition to the 200 series actuator family. This model was added as an optimum solution to a torque gap between the 260 and 270 sizes. It incorporates all the standard features of the RCI200 series except that it is available only in standard and high temperature builds. An added feature unique to the 265 model is adjustable limit stops that allow $\pm 4^{\circ}$ adjustment of both open and close positions. An external stop cam can be custom machined for different degrees of rotation. ## **Rotork Actuators – Quality Controlled** #### **Compact Declutchable Handwheel** The override is integrated in the endcap of the actuator and can be fitted to all RCI200 series units in both double-acting and spring-return configurations. The RC M1 manual override is the optimum solution for users requiring a compact unit of minimum weight and size. - For both double-acting and spring-return actuators. - Lightweight yet rugged design. RCI280-SR M1 With control accessories - Safe, non-rotating handwheel, eliminates use of levers for manual operation. - Valve/actuator can be locked in either open or close position. - Can serve as an adjustable travel stop in either direction. See the comparison below of an RCI200 M1 with a rack and pinion actuator equipped with an intermediate gearbox providing the override function. Rack & pinion actuator with intermediate gearbox Note that the installed height of an RCI200-DA with M1 override is the same as an RCI200 actuator without manual override and is significantly less than that of an actuator/ gearbox solution. RCI240-DA M1 ## **Fitting Accessories** #### **The Right Accessory Solutions** Valves and actuators only perform as well as the solution is engineered. With decades of experience engineering fluid power valve automation for a multitude of applications and markets, you can depend on Rotork to provide a reliable and safe automation solution to meet your requirements. ## **RCI200 Dimensions** | | Dimensions (inch) | | | | | | | | | | | | | Weight | | | | | | | | | |---------|-------------------|------|-------------|-------------|------|-------|--------|-------|-------|-------|--------|------|-------|--------|------|--------|------|-------|-------|-------|------|------| | | | | Fig. 1 | | | | Fig. 2 | | | | Fig. 3 | | | | | Fig. 4 | 1/4a | | | (lbs) | | | | Model | HC 1 | HC 2 | HC 3 | Y** | Z | А | | A1 | В1 | Н | | K | М | N | С | | | G | U* | V | DA | SR | | RCI210 | F05 | F07 | - | .551/.553 | .75 | 1.77 | 3.85 | 1.77 | 5.70 | .393 | 1.39 | 1.39 | 1.574 | 1.18 | 1.26 | 1.61 | 2.95 | .630 | 1.378 | .078 | 3.1 | 4.0 | | RCI220 | F05 | F07 | - | .551/.553 | .75 | 3.85 | 3.85 | 5.91 | 5.91 | .393 | 3.15 | 1.18 | - | - | 1.26 | 1.61 | 2.95 | .630 | 1.378 | .078 | 4.0 | 5.8 | | RCI230 | F07 | F10 | - | .669/.672 | 1.18 | 2.56 | 5.30 | 2.56 | 7.87 | .629 | 3.15 | 1.18 | - | - | 1.93 | 2.17 | 4.25 | .984 | 2.165 | .118 | 8.0 | 10.4 | | RCI240 | F07 | F10 | - | .866/.869 | 1.18 | 5.30 | 5.30 | 7.70 | 7.70 | .629 | 3.15 | 1.18 | - | - | 1.93 | 2.17 | 4.25 | .984 | 2.756 | .118 | 10.6 | 15.5 | | RCIO250 | F10 | F12 | - | .866/.869 | 1.46 | 3.54 | 7.48 | 3.54 | 11.22 | .944 | 3.15 | 1.18 | - | - | 2.72 | 2.95 | 6.10 | 1.378 | 2.756 | .118 | 20.4 | 26.8 | | RCIO260 | F10 | F12 | - | 1.063/1.066 | 1.46 | 7.48 | 7.48 | 11.22 | 11.81 | .944 | 3.15 | 1.18 | - | - | 2.72 | 2.95 | 6.10 | 1.378 | 3.346 | .118 | 28 | 40 | | RCI265 | F12 | - | - | 1.063/1.066 | 1.46 | 7.68 | 7.68 | 12.48 | 12.48 | .866 | 3.15 | 1.18 | - | - | 2.99 | 2.99 | 7.95 | 1.378 | 3.346 | .118 | 42 | 59 | | RCIO270 | F14 | - | 6.69 x 4.33 | 1.417/1.420 | 2.52 | 5.70 | 11.60 | 5.70 | 20.08 | 1.574 | 5.12 | 1.18 | - | - | 4.33 | 4.33 | 9.76 | 2.362 | 3.937 | .157 | 69 | 100 | | RCIO280 | F12 | F16 | 9.24 x 3.82 | 1.812/1.815 | 2.52 | 11.80 | 11.60 | 20.08 | 20.87 | 1.574 | 5.12 | 1.18 | - | - | 4.33 | 4.33 | 9.76 | 2.362 | 5.118 | .197 | 107 | 142 | **rotork** Fluid Systems ### **RCI200 Dimensions** #### RCI210 to 240 # M5, Depth: 8 G1/8", Depth: 8 #### **RCI250 to 280** Hole pattern for solenoid valves acc. to VDI/VDE 3845, NAMUR $\,$ #### **RCI210 to 265** 12 24 #### RCI270 to 280 SV = Mounting solenoid valves acc. to VDI/VDE 3845, NAMUR U+V = Guide ring acc. to DIN 3337 Fig. 4a | | Dimensions (inch) | | | | | | | | |---------|-------------------|--------|------|------|------------------|--|--|--| | | | Fig. 5 | | w/M | 1 1 (lbs) | | | | | Model | D | Х | W | DA | SR | | | | | RCI210 | 7.1 | 5.7 | 11.4 | 4.9 | 5.5 | | | | | RCI220 | 7.1 | 5.7 | 11.4 | 6.0 | 7.0 | | | | | RCI230 | 7.1 | 7.5 | 13.4 | 10.6 | 11.7 | | | | | RCI240 | 7.1 | 7.5 | 13.4 | 12.8 | 15.7 | | | | | RCIO250 | 12.6 | 11.6 | 19.7 | 30.4 | 33.5 | | | | | RCIO260 | 12.6 | 11.6 | 19.7 | 36.0 | 44.5 | | | | | RCI265 | 12.6 | 14.6 | 19.7 | 53.6 | 68.3 | | | | | RCIO270 | 15.8 | 20.3 | 31.5 | 104 | 127 | | | | | RCIO280 | 23.6 | 19.3 | 31.5 | 121 | 192 | | | | U* = Guide ring for other hole circle on request. Y** = Tolerance H9. The hole is octagonal and adapts to valve stems with squares at either 90° (ISO 5711) or 45° (DIN 3337) orientations. | Н | ole Dimens | ions (inch |) | |--------------|------------|-------------------|-------| | ISO 5211 | Circle Ø | Thread | Depth | | F05 | 1.97 | 1/4-20 | .43 | | F07 | 2.76 | 5/16-18 | .55 | | F10 | 4.02 | 1/2-13 | .67 | | F12 | 4.92 | 3/8-16 | .83 | | F14 | 5.51 | 5/8-11 | .98 | | F16 | 6.50 | 3/4-10 | 1.26 | | 170 x 110 | - | 5/8-11 | .98 | | 234.7 x 97.2 | 10.00 | 5/8-11 | .98 | ## **RCI200 Dimensions** #### Air Consumption DA | | Free Air at 87 psi | (Litres) | |---------|----------------------------|-----------------------| | Model | Anti-clockwise
rotation | Clockwise
rotation | | RCI210 | 0.6 | 1.1 | | RCI220 | 1.1 | 1.3 | | RCI230 | 2.2 | 4 | | RCI240 | 4.4 | 5 | | RCIO250 | 6.9 | 13 | | RCIO260 | 13.8 | 16 | | RCI265 | 32 | 36 | | RCIO270 | 33 | 54 | | RCIO280 | 66 | 67 | #### Air Consumption SR | Free A | ir at 87 psi (Litres) | |--------|-----------------------| | Model | | | RC210 | 1.1 | | RC220 | 1.3 | | RC230 | 4 | | RC240 | 5 | | RC250 | 13 | | RC260 | 16 | | RC265 | 36 | | RC270 | 54 | | RC280 | 67 | #### **Operation Times DA/SR** | 1 | Time at 87 psi (sec) | | | | | | | | | | |-------|--|--|--|--|--|--|--|--|--|--| | Model | Anti-clockwise and
Clockwise rotation | | | | | | | | | | | RC210 | <0.3 | | | | | | | | | | | RC220 | <0.3 | | | | | | | | | | | RC230 | <0.6 | | | | | | | | | | | RC240 | <0.7 | | | | | | | | | | | RC250 | <2.5 | | | | | | | | | | | RC260 | <2.5 | | | | | | | | | | | RC265 | <1.5 | | | | | | | | | | | RC270 | <5 | | | | | | | | | | | RC280 | <5 | | | | | | | | | | The times relate to full air flow and may increase depending on solenoid valves and the dimensions of connecting pipes. ## **Torque Data – Double-Acting** #### RCI200-DA | | | Position | | | C | Output Tore | que (Ibf-in) |)* | | | |---------|----------------|---------------------------|--------------------------|---------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | Model | Function | 0° = closed
90° = open | 2.1 bar
30 psi | 2.8 bar
40 psi | 3.5 bar
50 psi | 4.2 bar
60 psi | 4.5 bar
65 psi | 5.5 bar
80 psi | 6 bar
87 psi | 7 bar
100 psi | | RCI210 | Air open/close | 90°
60°
0° | 115
53
80 | 150
71
106 | 186
89
133 | 221
106
159 | 239
115
168 | 310
150
221 | 336
168
239 | 389
195
283 | | RCI220 | Air open/close | 90°
60° | 230
115
159 | 301
150
212 | 372
186
266 | 451
221
319 | 487
239
345 | 620
310
443 | 673
336
478 | 779
389
558 | | RCI230 | Air open/close | 0°
60° | 425
212
310 | 566
274
407 | 708
345
504 | 850
416
611 | 912
443
655 | 1,177
584
850 | 1,283
637
929 | 1,460
735
1,062 | | RCI240 | Air open/close | 90°
60° | 867
434
620 | 1,151
575
823 | 1,434
717
1,036 | 1,726
859
1,239 | 1,850
920
1,328 | 2,354
1,177
1,708 | 2,567
1,283
1,859 | 3,009
1,505
2,124 | | RCIO250 | Air open/close | 0°
60°
90° | 1,328
664
956 | 1,770
885
1,266 | 2,213
1,106
1,584 | 2,655
1,328
1,903 | 2,841
1,425
2,036 | 3,655
1,823
2,593 | 3,983
1,991
2,832 | 4,691
2,301
3,363 | | RCIO260 | Air open/close | 0°
60°
90° | 2,699
1,328
1,947 | 3,602
1,770
2,593 | 4,496
2,213
3,248 | 5,399
2,655
3,894 | 5,788
2,841
4,169 | 7,382
3,735
5,275 | 8,054
4,071
5,753 | 9,470
4,691
6,815 | | RCI265 | Air open/close | 0°
60°
90° | 3,824
1,797
2,717 | 5,098
2,399
3,620 | 6,373
2,992
4,532 | 7,647
3,593
5,434 | 8,196
3,850
5,824 | 10,515
4,921
7,470 | 11,471
5,364
8,152 | 13,382
6,293
9,515 | | RCIO270 | Air open/close | 0°
60°
90° | 5,576
2,788
4,027 | 7,435
3,717
5,372 | 9,293
4,647
6,709 | 11,152
5,576
8,054 | 11,949
5,974
8,629 | 15,338
7,629
11,037 | 16,728
8,320
12,037 | 19,472
9,736
14,073 | | RCIO280 | Air open/close | 90°
90° | 11,240
5,620
8,098 | 14,984
7,497
10,798 | 18,737
9,364
13,497 | 22,481
11,240
16,197 | 24,083
12,046
17,356 | 30,827
15,418
22,233 | 33,633
16,816
24,251 | 39,386
19,649
28,234 | ^{*} Output torque +/- 5%. # Torque Data – Spring-Return (spring to close) #### RCI200-SR | | | Position | | | C | output Tore | que (lbf-in |)* | | | |------------|----------|---------------------------|-------------------------|-------------------------|--------------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------| | Model | Function | 0° = closed
90° = open | 2.1 bar
30 psi | 2.8 bar
40 psi | 3.5 bar
50 psi | 4.2 bar
60 psi | 4.5 bar
65 psi | 5.5 bar
80 psi | 6 bar
87 psi | 7 bar
100 psi | | DCI210 | Air | 0°
60°
90° | 62
27
35 | 80
35
44 | 106
44
53 | 124
53
66 | 133
53
71 | 168
71
89 | 177
80
97 | 212
89
115 | | RCI210 | Spring | 90°
30°
0° | 53
27
35 | 71
35
53 | 89
44
62 | 106
53
75 | 115
53
80 | 142
71
97 | 159
80
106 | 186
89
124 | | D.C.I.O.O. | Air | 0°
60°
90° | 133
53
71 | 168
71
89 | 212
89
106 | 257
106
133 | 274
115
142 | 345
142
177 | 363
159
195 | 425
186
230 | | RCI220 | Spring | 90°
30°
0° | 115
53
80 | 150
71
97 | 186
89
124 | 221
106
150 | 239
115
159 | 292
142
204 | 327
159
221 | 381
186
257 | | D G la a a | Air | 0°
60°
90° | 239
106
133 | 319
133
168 | 398
168
212 | 478
204
257 | 513
221
274 | 637
274
345 | 690
292
363 | 814
345
425 | | RCI230 | Spring | 90°
30°
0° | 212
106
150 | 274
133
195 | 345
168
239 | 416
204
292 | 451
221
319 | 558
274
389 | 611
292
416 | 717
345
487 | | | Air | 0°
60°
90° | 487
212
257 | 646
274
345 | 814
345
425 | 974
416
513 | 1,053
451
558 | 1,301
558
682 | 1,398
602
743 | 1,637
708
867 | | RCI240 | Spring | 90°
30°
0° | 425
212
292 | 566
274
389 | 708
345
487 | 850
416
584 | 920
540
628 | 1,133
558
779 | 1,239
602
850 | 1,443
708
1,018 | | DCIO3E0 | Air | 0°
60°
90° | 752
327
398 | 1,000
434
531 | 1,257
549
664 | 1,505
655
797 | 1,629
708
859 | 2,009
876
1,062 | 2,168
929
1,151 | 2,567
1,106
1,372 | | RCIO250 | Spring | 90°
30°
0° | 664
327
443 | 885
434
593 | 1,106
549
735 | 1,328
655
885 | 1,434
708
956 | 1,770
876
1,177 | 1,903
929
1,328 | 2,257
1,106
1,549 | | DCIO3CO | Air | 0°
60°
90° | 1,531
664
797 | 2,036
885
1,062 | 2,540
1,106
1,328 | 3,054
1,328
1,593 | 3,310
1,434
1,726 | 4,071
1,770
2,124 | 4,425
1,903
2,345 | 5,133
2,213
2,744 | | RCIO260 | Spring | 90°
30°
0° | 1,354
664
929 | 1,797
885
1,239 | 2,248
1,106
1,549 | 2,699
1,328
1,859 | 2,921
1,434
2,009 | 3,602
1,770
2,478 | 3,894
1,903
2,699 | 4,558
2,213
3,098 | | | Air | 0°
60°
90° | 2,478
1,000
1,106 | 3,301
1,328
1,478 | 4,133
1,655
1,841 | 4,956
1,991
2,213 | 5,372
2,160
2,399 | 5,939
2,478
2,682 | 6,461
2,699
2,921 | 8,275
3,186
3,762 | | RCI265 | Spring | 90°
30°
0° | 1,859
912
1,354 | 2,478
1,213
1,797 | 3,098
1,513
2,248 | 3,717
1,814
2,699 | 4,027
1,965
2,921 | 4,956
2,416
3,602 | 5,399
2,921
3,894 | 6,151
3,142
4,647 | | | Air | 0°
60°
90° | 3,142
1,372
1,682 | 4,186
1,832
2,239 | 5,240
2,283
2,806 | 6,284
2,744
3,363 | 6,806
2,974
3,647 | 8,382
3,655
4,487 | 9,116
3,894
4,868 | 10,709
4,602
5,664 | | RCIO270 | Spring | 90°
30°
0° | 2,788
1,372
1,903 | 3,717
1,832
2,540 | 4,647
2,283
3,169 | 5,576
2,744
3,806 | 6,036
2,974
4,124 | 7,435
3,655
5,071 | 8,054
3,894
5,487 | 9,382
4,602
6,373 | | | Air | 0°
60°
90° | 6,328
2,744
3,363 | 8,435
3,655
4,487 | 10,550
4,576
5,603 | 12,657
5,487
6,727 | 13,710
5,948
7,284 | 16,878
7,320
8,966 | 18,410
7,966
9,824 | 21,507
9,293
11,417 | | RCIO280 | Spring | 90°
30°
0° | 5,620
2,744
3,850 | 7,497
3,655
5,133 | 9,364
4,576
6,417 | 11,240
5,487
7,700 | 12,179
5,948
8,337 | 14,984
7,320
10,267 | 16,285
7,966
11,152 | 19,029
9,293
13,011 | ^{*} Output torque +/- 5%. Note: Springs adapted to air supply pressure. ## **Torque Data – Spring-Return (spring to open)** #### RCI200-SRF | | | Position | | | C | output Tore | que (lbf-in |)* | | | |----------------|----------|---------------------------|-------------------------|-------------------------|--------------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------| | Model | Function | 0° = closed
90° = open | 2.1 bar
30 psi | 2.8 bar
40 psi | 3.5 bar
50 psi | 4.2 bar
60 psi | 4.5 bar
65 psi | 5.5 bar
80 psi | 6 bar
87 psi | 7 bar
100 psi | | | Spring | 0°
60°
90° | 62
23
27 | 85
32
38 | 106
41
49 | 133
49
58 | 142
53
62 | 177
66
80 | 186
69
89 | 221
80
102 | | RCI210 | Air | 90°
45°
0° | 46
25
40 | 64
34
55 | 80
43
71 | 97
53
89 | 106
57
89 | 133
71
115 | 143
80
127 | 168
89
152 | | | Spring | 0°
60°
90° | 124
47
59 | 177
64
80 | 221
80
106 | 266
97
124 | 292
106
133 | 363
133
168 | 381
137
177 | 443
159
204 | | RCI220 | Air | 90°
45°
0° | 97
50
83 | 124
68
115 | 159
87
142 | 195
106
177 | 212
115
195 | 266
142
239 | 292
159
266 | 336
190
305 | | DCI220 | Spring | 0°
60°
90° | 239
87
106 | 327
115
142 | 416
150
186 | 504
186
221 | 549
204
239 | 682
248
301 | 743
266
336 | 823
292
354 | | RCI230 | Air | 90°
45°
0° | 186
97
150 | 257
133
204 | 327
168
257 | 389
204
319 | 425
221
345 | 531
274
425 | 549
292
456 | 664
363
584 | | D.C.12.40 | Spring | 0°
60°
90° | 496
177
221 | 682
239
301 | 867
310
381 | 1,044
372
460 | 1,151
407
496 | 1,416
504
620 | 1,593
575
708 | 1,682
602
726 | | RCI240 | Air | 90°
45°
0° | 372
195
310 | 513
274
425 | 646
345
540 | 788
416
655 | 859
460
717 | 1,062
566
885 | 1,089
584
859 | 1,372
743
1,195 | | DCIOSEO | Spring | 0°
60°
90° | 743
266
327 | 1,018
372
443 | 1,283
469
566 | 1,549
566
690 | 1,726
620
752 | 2,124
770
929 | 2,345
850
1,062 | 2,699
991
1,151 | | RCIO250 | Air | 90°
45°
0° | 575
301
478 | 788
416
655 | 974
531
867 | 1,195
646
1,018 | 1,328
699
1,106 | 1,637
867
1,372 | 1,726
920
1,416 | 1,991
1,089
1,726 | | | Spring | 0°
60° | 1,549
558
682 | 2,124
761
929 | 2,655
974
1,195 | 3,275
1,195
1,416 | 3,540
1,283
1,549 | 4,425
1,593
1,947 | 4,779
1,726
2,168 | 5,487
1,947
2,478 | | RCIO260 | Air | 90°
45°
0° | 1,195
620
974 | 1,637
850
1,328 | 2,832
1,062
1,682 | 2,478
1,328
2,036 | 2,496
1,310
1,956 | 3,408
1,770
2,788 | 3,540
1,859
2,921 | 4,116
2,213
3,496 | | D G I D G T | Spring | 0°
60°
90° | 2,222
814
1,000 | 2,965
1,089
1,328 | 3,708
1,363
1,664 | 4,425
1,549
1,991 | 4,744
1,664
2,133 | 5,930
2,036
2,655 | 6,461
2,301
2,876 | 7,523
2,655
3,319 | | RCI265 | Air | 90°
45°
0° | 1,664
894
1,398 | 2,213
1,195
1,859 | 2,770
1,496
2,328 | 3,319
1,770
2,788 | 3,558
1,894
2,992 | 4,425
2,301
3,540 | 4,647
2,567
3,939 | 5,487
2,965
4,647 | | D.C.I.C.S.T.S. | Spring | 0°
60°
90° | 3,098
1,151
1,372 | 4,248
1,549
1,859 | 5,487
19,649
2,390 | 6,638
2,390
2,832 | 7,169
2,567
3,098 | 8,939
3,231
3,894 | 9,736
3,540
4,248 | 11,063
3,983
4,868 | | RCIO270 | Air | 90°
45°
0° | 2,390
1,283
2,036 | 3,275
1,726
2,744 | 4,160
2,213
3,452 | 5,045
2,655
4,248 | 5,487
2,921
4,602 | 6,815
3,629
5,709 | 7,346
3,806
6,019 | 8,851
4,779
7,169 | | | Spring | 0°
60°
90° | 6,461
2,301
2,832 | 8,851
3,186
3,894 | 11,240
4,071
4,956 | 13,630
4,868
6,019 | 14,781
5,310
6,550 | 18,410
6,638
8,143 | 19,914
6,904
8,851 | 22,127
7,258
9,736 | | RCIO280 | Air | 90°
45°
0° | 4,956
2,567
4,071 | 6,815
3,540
5,576 | 8,674
4,514
7,125 | 10,444
5,487
8,674 | 11,417
5,930
9,382 | 14,161
7,390
11,683 | 15,046
7,966
12,214 | 17,702
9,736
15,046 | ^{*} Output torque +/- 5%. Note: Springs adapted to air supply pressure. Electric Actuators and Control Systems Fluid Power Actuators and Control Systems Gearboxes and Gear Operators Projects, Services and Retrofit # **rotork*** Fluid Systems ## www.rotork.com