-CF3M 511 114 -GZ10 G\_UUGB 351-CF A35 -67 - 435-



A216-W A351-CN7N -CW12MW Δ 9 B367-GR 94-M35-1 194-C7

4 A





### A history of Quality, Service and Innovation



Now in its ninth decade, Conbraco Industries, Inc. is a leading manufacturer of flow control products for U.S. and international markets. The company's headquarters is based in Matthews, North Carolina with manufacturing plants and foundries located in Pageland and Conway, South Carolina.

Conbraco has a history of new product development and innovation that dates back to the company's inception in 1928. Today, the Conbraco line of products is marketed under the "Apollo Valves" brand and includes: ball valves, butterfly valves, backflow prevention devices, water pressure reducing valves, mixing valves, safety relief valves, water gauges, strainers, actuation and ApolloXpress products.

Conbraco's vertically integrated manufacturing ensures a consistency of production, testing, quality and availability. You can be assured that Conbraco flow control products will deliver long term reliability. All Conbraco plants are registered to ISO 9001:2008 quality standards.

The Conbraco line continues to expand with new products, designs and advanced materials to better serve the needs of our customers. Markets served include: chemical processing, pulp and paper, petroleum, residential and commercial plumbing and heating, OEM, irrigation, water works, and fire protection.



PAGELAND, SC Bronze Foundry and Manufacturing Plant



PAGELAND, SC Final Assembly and Distribution Center



CONWAY, SC Steel Foundry and Manufacturing Plant



MATTHEWS, NC Corporate Headquarters

### TABLE OF CONTENTS

| Top Entry Ball Valve Features       | 3    |
|-------------------------------------|------|
| Materials                           | 4-5  |
| Seat Data                           | 6-7  |
| Pressure-Temperature Ratings        | 8-13 |
| Dimensions: Flanged Valve           | 14   |
| Dimensions: Socket Weld & NPT Valve | 15   |
| Dimensions: Buttweld Valve          | 16   |
| Dimensions: Flanged Full Port       | 17   |
| Dimensions: Actuator Mounting       |      |

| Extended Bonnets                | 21    |
|---------------------------------|-------|
| Fugitive Emissions              | 22-23 |
| Steam Jacketed Valves           | 24    |
| Special Applications            | 25    |
| Flow Coefficients               | 26    |
| Operating Torques               | 27    |
| How to Specify Top Entry Valves | 28-29 |
| Warranty                        |       |

### Apollo<sup>®</sup> Top Entry Ball Valve Features:

#### **TOP ENTRY ADVANTAGES:**

#### Self-Adjusting Seats: Compensate for Wear & Temperature Fluctuations

#### **STANDARDS COMPLIANCE**

(Most valves within this family of products comply with the requirements of these listed standards.)

| a remperature Fluctuations   |             |                                                    |
|------------------------------|-------------|----------------------------------------------------|
|                              | ASME B16.5  | "Pipe Flanges and Flanged Fittings"                |
|                              | ASME B16.10 | "Face to Face Dimensions of Valves"                |
| Pressure Activated Seating   |             | (Except Full Port Valves)                          |
|                              | ASME B16.34 | "Valves – Flanged, Threaded, and Welding End."     |
| Built-In Antistatic Feature  | ASME B31.1  | "Power Piping"                                     |
|                              | ASME B31.3  | "Chemical Plant and Petroleum Refinery Piping"     |
| Simplified In-line Service   | ASME B31.8  | "Gas Transmission and Distribution Piping Systems" |
|                              | API 607     | "Fire Test – Soft Seated Quarter Turn Valves"      |
| Minimal Potential Leak Paths |             | (Depending on Seat and Seal Selection)             |
|                              | MSS SP-25   | "Standard Marking System for Valves"               |
|                              | MSS SP-61   | "Pressure Testing of Steel Valves"                 |
|                              | MSS SP-72   | "Ball Valves with Flanged of Buttweld Ends"        |

#### **NO SURPRISES**

Apollo's Top Entry Ball Valves offer more. In addition to the three things everyone has come to expect from Apollo: high quality products, competitive pricing and on time delivery, Apollo Top Entry Valves deliver additional premiums; a broader choice of material for both internal and external components, more optional features to choose from, and selectable seal material combinations all resulting in an expanded serviceable application range.

#### **FIT FOR PURPOSE**

These premiums can be combined to create a product uniquely tailored to customer specifications and applications. These additional options allow a value to be selected without compromising critical performance requirements or operating conveniences and without adding unnecessary features and the costs associated with them.

#### THE CORRECT DESIGN

The special "V" seating design introduced the self-adjusting seat to the floating ball valve. This design does not rely on the built-in interference of conventional floating ball valves. It provides automatic compensation for pressure, temperature and wear. As these changes occur, the ball and seats are continuously snugged down into the "V" resulting in positive leak-tight shutoff when using resilient seats. Maintaining a low pressure seal had been the most difficult condition for floating ball valves, the wedge effect on the ball and seats down the "V" assures continued low pressure sealing for the life of the seat. All Apollo Top Entry Valves have an "anti-static" feature designed in. All valve configurations also feature blow-out proof stems as standard.



#### THE RIGHT APPLICATION

Apollo's Top Entry Valves provide simplified in-line maintenance in the most natural way. The valve body is allowed to act as a permanent part of the piping system. Potential leak paths are eliminated with the one piece body. Only the bonnet seal and stem seals remain to be counted. And with the variety of bonnet gaskets and stem seal arrangements available through the selection of optional features, even these threats can be minimized.



### **Materials**

| Body Material Code:                                                   | A                                        | В              | C                                                     | F                   | Η                |  |
|-----------------------------------------------------------------------|------------------------------------------|----------------|-------------------------------------------------------|---------------------|------------------|--|
| Description                                                           | Alloy 20                                 | CF3M SS        | Carbon Steel                                          | Inconel (625)       | Hastelloy C      |  |
| Body<br>(all types)                                                   | ASTM A351-CN7M                           | ASTM A351-CF3M | ASTM A216-WCB                                         | ASTM A494-Gr. CW6MC | ASTM A494-CW12MW |  |
| Bonnet                                                                | ASTM A351-CN7M                           | ASTM A351-CF3M | ASTM A216-WCB                                         | ASTM A494-Gr. CW6MC | ASTM A494-CW12MW |  |
| Seat Ring(s)<br>(from bar, tube or pipe<br>depending on availability) | ASTM B473-CB-3                           | ASTM A276-316L | ASTM A269-316 or<br>ASTM A276-316 or<br>ASTM A312-316 | ASTM B446-N06625    | ASTM B574-C276   |  |
| Internal Spring<br>(1 or 2 seats)                                     | Incono                                   | L V 750        | ASTM A313-Type 316                                    |                     | Hastelloy C      |  |
| Internal Spring<br>(3, 4, 5, 6, 7, 8, 9, A or Z seats)                | Incone                                   | Ι Α-/Ου        | Inconel X-750                                         |                     | ASTM B574        |  |
| Packing Gland                                                         |                                          |                | 316 Stainless Steel                                   |                     |                  |  |
| Packing Jam Nut                                                       |                                          |                | 18-8 Stainless Steel                                  |                     |                  |  |
| Lever Assembly<br>(1/2 - 2")                                          |                                          |                | 304 SS w/Vinyl Grip                                   |                     |                  |  |
| Lever Assembly<br>(3" - 8")                                           | SS Wrench Head and Pipe                  |                |                                                       |                     |                  |  |
| Grounding Spring                                                      | 18-8 Stainless Steel                     |                |                                                       |                     |                  |  |
| Studs                                                                 | ASTM A193-B8M ASTM A193-B7 ASTM A193-B8M |                |                                                       |                     |                  |  |
| Nuts                                                                  | ASTM A                                   | 194-Gr.8       | ASTM A194-2H                                          | H ASTM A194-Gr.8    |                  |  |
| Capscrews                                                             | Not Ap                                   | plicable       | ASTM A193-B7                                          | Not Applicable      |                  |  |

| Body Material Code:                                                   | Μ                                 | N                               | S T                                                |                  |  |  |
|-----------------------------------------------------------------------|-----------------------------------|---------------------------------|----------------------------------------------------|------------------|--|--|
| Description                                                           | M35-1 (Monel)                     | Nickel (200)                    | Stainless Steel                                    | Titanium         |  |  |
| Body<br>(Flanged ends)                                                |                                   |                                 | ASTM A351-CF8M                                     |                  |  |  |
| Body<br>(Buttweld, Socket weld, and<br>screwed ends)                  | ASTM A494-M35-1                   | ASTM A494-CZ100                 | ASTM A351-CF3M                                     | ASTM B367-Gr. C3 |  |  |
| Bonnet                                                                | ASTM A494-M35-1                   | ASTM A494-CZ100                 | ASTM A351-CF8M                                     | ASTM B367-Gr. C3 |  |  |
| Seat Ring(s)<br>(from bar, tube or pipe<br>depending on availability) | ASTM B164-400 or<br>ASTM B165-400 | ASTM B160-200<br>ASTM B161- 200 | ASTM A269-316<br>ASTM A276-316 or<br>ASTM A312-316 | ASTM B348-Gr.2   |  |  |
| Internal Spring<br>(1 or 2 seats)                                     | In concl. V. 750                  | In concl. V. 750                | ASTM A313-Type 316                                 | T: CAL AV        |  |  |
| Internal Spring<br>(3, 4, 5, 6, 7, 8, 9, A or Z seats)                | Inconel X-750                     |                                 | Inconel X-750                                      | II-OAL-4V        |  |  |
| Packing Gland                                                         |                                   | 316 Stair                       | iless Steel                                        |                  |  |  |
| Packing Jam Nut                                                       |                                   | 18-8 Staii                      | nless Steel                                        |                  |  |  |
| Lever Assembly<br>(1/2 - 2")                                          | 304 SS w/Vinyl Grip               |                                 |                                                    |                  |  |  |
| Lever Assembly<br>(3" - 8")                                           | SS Wrench Head and Pipe           |                                 |                                                    |                  |  |  |
| Grounding Spring                                                      | 18-8 Stainless Steel              |                                 |                                                    |                  |  |  |
| Studs                                                                 |                                   | ASTM A                          | 193-B8M                                            |                  |  |  |
| Nuts                                                                  |                                   | ASTM A                          | 194-Gr.8                                           |                  |  |  |

### Materials

#### Trim (Internal) Material

| Trim Material Code:          | Trim Material Code: A |                   | D                            | H                   |
|------------------------------|-----------------------|-------------------|------------------------------|---------------------|
| Description Alloy 20 316L SS |                       | 316L SS           | Hastelloy C Stem, M35-1 Ball | Hastelloy C         |
| Dall                         | ASTM A351-CN7M or     | ASTM A351-CF3M or | ASTM A494-M35-1 or           | ASTM A494-CW12MW or |
| Ball                         | ASTM B473-CB-3        | ASTM A276-316L    | ASTM B164-K400               | ASTM B574-C276      |
| Stem ASTM B473-CB-3          |                       | ASTM A276-316L    | ASTM B574-C276               | ASTM B574-C276      |

| Trim Material Code: | Trim Material Code:MNDescriptionM35-1Nickel (200) |                    | S                 | Т                   |
|---------------------|---------------------------------------------------|--------------------|-------------------|---------------------|
| Description         |                                                   |                    | Stainless Steel   | Titanium            |
| Ball                | ASTM A494-M35-1 or                                | ASTM A494-CZ100 or | ASTM A351-CF8M or | ASTM B367-Gr. C3 or |
|                     | ASTM B164-K400                                    | ASTM B160-200      | ASTM A276-316     | ASTM B348-Gr. 4-5   |
| Stem                | ASTM B164-K400                                    | ASTM B160-200      | ASTM A276-316     | ASTM B348-Gr. 4-5   |

#### Seat & Seals Material

| Seat Code:     | 1*   | 2                            | 3                                    | 4               | 5                                  |  |  |  |
|----------------|------|------------------------------|--------------------------------------|-----------------|------------------------------------|--|--|--|
| Seat           | PTFE | RPTFE<br>Glass Reinforced    | RPTFE<br>Glass Reinforced            | Carbon Graphite | 55% Bronze, 5% Moly<br>Filled PTFE |  |  |  |
| Seat O-ring    |      | Not Applicable               |                                      |                 |                                    |  |  |  |
| Stem Packing   | PTFE | PTFE RPTFE Flexible Graphite |                                      |                 |                                    |  |  |  |
| Bonnet Gasket  | PTFE | RPTFE                        | RPTFE Spiral Wound Flexible Graphite |                 |                                    |  |  |  |
| Default Suffix | Z01  | 001                          | BS1                                  |                 |                                    |  |  |  |

\* Class 150 and Class 300 Only

| Seat Code:     | 6                              | 7*                          | 8              | 9                         | A                          |  |  |  |
|----------------|--------------------------------|-----------------------------|----------------|---------------------------|----------------------------|--|--|--|
| Seat           | UHMWPE                         | API 607 - PTFE<br>Fire Seat | Unfilled PEEK  | CERAMIC<br>(Seats & Ball) | API 607 RPTFE<br>Fire Seat |  |  |  |
| Seat O-ring    | Not Applicable                 | PTFE                        | Not Applicable |                           | PTFE                       |  |  |  |
| Stem Packing   |                                | Flexible Graphite           |                |                           |                            |  |  |  |
| Bonnet Gasket  | Spiral Wound Flexible Graphite |                             |                |                           |                            |  |  |  |
| Default Suffix | BS1                            |                             |                |                           |                            |  |  |  |

\* Class 150 and Class 300 Only

| Seat Code:     | B D                       |                              | F                         | G                              | Н                      |  |  |  |
|----------------|---------------------------|------------------------------|---------------------------|--------------------------------|------------------------|--|--|--|
| Seat           | Carbon Reinforced<br>PEEK | 60% Stainless<br>Filled PTFE | Carbon Reinforced<br>PTFE | PCTFE                          | High Temp.<br>Graphite |  |  |  |
| Seat O-ring    |                           | Not Applicable               |                           |                                |                        |  |  |  |
| Stem Packing   |                           | Flexible Graphite            | RPTFE                     | Flexible Graphite              |                        |  |  |  |
| Bonnet Gasket  | S                         | piral Wound Flexible Graphi  | RPTFE                     | Spiral Wound Flexible Graphite |                        |  |  |  |
| Default Suffix |                           | BS1                          | 001                       | BS1                            |                        |  |  |  |

| Seat Code:     | L                              | Т         | U      |  |  |
|----------------|--------------------------------|-----------|--------|--|--|
| Seat           | API 607 Multiseal<br>Fire Seat | Multiseal | UHMWPE |  |  |
| Seat O-ring    | Multiseal Ring Not Applicable  |           |        |  |  |
| Stem Packing   | Flexible Graphite              |           |        |  |  |
| Bonnet Gasket  | Spiral Wound Flexible Graphite |           |        |  |  |
| Default Suffix | BS1                            |           |        |  |  |



#### Seat Data

#### SEAT CODE "1" (PTFE), CLASS 150 AND CLASS 300 ONLY

General application seat material, exhibiting lowest operating torque and excellent resistance to chemical attack. (Figure 1) See Pressure-Temperature Chart 1

#### SEAT CODE "2" (RPTFE)

Most commonly specified seat material, and used as the basis for published torque values. Maintains the excellent chemical resistance of unfilled Teflon<sup>®</sup> (PTFE) with increased resistance to wear and abrasion resulting in longer life. **(Figure 1) See Pressure-Temperature Chart 2** 

#### SEAT CODE "3" (RPTFE WITH INNER RING)

Features a metallic inner ring to improve abrasion resistance particularly in high solids or throttling applications. Maintains the other features of the #2 seat. (Figure 2) See Pressure-Temperature Chart 2

#### SEAT CODE "7" (API 607 CERTIFIED PTFE), UP TO 450°F

This seat design has been successfully tested to the requirements of API 607, fourth edition. The PTFE seat is fully confined by a metallic seat holder which provides a secondary seal in the event of the loss of the primary PTFE seal due to a fire. As the seat seal material is PTFE, chemical and torque characteristics will be the same as in the #1 seats. (Figure 3) See Pressure-Temperature Chart 1

#### SEAT CODE "A" (API 607 CERTIFIED RPTFE), UP TO 500°F

This seat design has been successfully tested to the requirements of API 607, fourth edition. The RPTFE seat is fully confined by a metallic seat holder which provides a secondary seal in the event of the loss of the primary PTFE seal due to a fire. The seat holder can perform the same function as the inner ring found in the #3 and #5 seats making this design appropriate for abrasive and throttling applications. As the seat seal material is RPTFE, chemical and torque characteristics will be the same as in the #2 and #3 seats. (Figure 3) See Pressure-Temperature Chart 2

#### SEAT CODE "5" (55% BRONZE / 5% MOLY BRTFE)

Specifically intended for steam applications. Also applicable to abrasive and throttling applications because of the heavy loading of reinforcing materials and the presence of the inner ring. However, chemical compatibility may be a limiting factor in the application of this seat.

(Figure 2) See Pressure-Temperature Chart 3

#### SEAT CODE "D" (60% STAINLESS STEEL SRTFE)

Intended for abrasive and throttling applications because of the heavy loading of reinforcing materials and the completely confined seat. (Figure 2) See Pressure-Temperature Chart 2

#### SEAT CODE "6" (UHMWPE)

Ultra High Molecular Weight Polyethylene offers good abrasion resistance making it suitable for use in high solids or slurry applications. These seats are completely confined by a metallic seat holder enhancing their performance in abrasive services. This seat is frequently specified in services where fluorine off-gasing in even the slightest amounts is objectionable. Examples of these services are food, tobacco processing, and nuclear services. (Figure 2) See Pressure-Temperature Chart 4

Seat Seat Ring



Figure 1

Seat Design 1



www.**apollovalves**.com



### Seat Data



#### Figure 4 Seat Design 4



#### SEAT CODE "U" (UHMWPE)

Exhibits the same characteristics as the #6 seat with the exception that it utilizes the inner seat ring to enhance performance in abrasive services. UHMWPE should be used with caution in the presence of solvents, and the operating torque can be expected to be 30% higher than that of the teflon based seat materials. (Figure 1) See Pressure-Temperature Chart 4

#### SEAT CODE "8" (PEEK)

PEEK (PolyEtherEtherKetone) offers a high strength alternative to RPTFE, resistant to creep and cold flow. This seat offers good abrasion resistance. Higher in cost, this material offers similar chemical resistance to PTFE but should be checked on application. Operating torque tend to be 40% higher than RPTFE. Ball stop recommended. (Figure 2) See Pressure-Temperature Chart 5

#### SEAT CODE "B" (CARBON REINFORCED PEEK)

Carbon Reinforced PEEK provides improved abrasion resistance when compared to the unfilled variety. Higher in cost, this material offers a broader temperature range than RPTFE with similar chemical resistance but should be checked on application. Operating torque tends to be 40% higher than RPTFE. Ball stop recommended. (Figure 2) See Pressure-Temperature Chart 5

#### SEAT CODE "4" (CARBON GRAPHITE)

Designed for high temperature applications. A ball stop is required in applications above 500°F. Maximum service temperature is limited to 750°F in oxidizing applications. This seat like all rigid seat materials does not necessarily provide "bubble tight" shut-off. Most test standards have allowable leakage rates or list "classes" of shut-off for this type of seat. Be aware of the system design requirements when specifying this or any rigid seat. Ball stop recommended. **(Figure 1) See Pressure-Temperature Chart 6** 

#### SEAT CODE "H" (HIGH TEMPERATURE GRAPHITE)

Designed for very high temperature applications. A ball stop is required in applications above 500°F. Maximum service temperature is limited to 1000°F. This seat like other rigid seat materials does not provide "bubble tight" shutoff. This seat is not as abrasion resistant as the #4 version. Be aware of the system design requirements when specifying this or any rigid seat. Ball stop recommended. (Figure 1) See Pressure-Temperature Chart 6

#### SEAT CODE "9" (CERAMIC)

Working in conjunction with a ceramic ball, this seat outperforms all other materials in throttling and abrasive applications. It possesses excellent chemical resistance. Cost is very high, and unless experience dictates its use, other alternatives should be evaluated first. A ball stop is recommended for all applications. This seat like all rigid seat materials does not necessarily provide "bubble tight" shut-off. Most test standards have allowable leakage rates or list "classes" of shut-off for this type of seat. Be aware of the system design requirements when specifying this or any rigid seat. (Figure 4) See **Pressure-Temperature Chart 7** 



#### **Pressure-Temperature Ratings**

| Valve Body Rating <sup>1</sup> – psi (bar) |                     |                     |                       |                        |                                     |                            |                           |                        |                     |
|--------------------------------------------|---------------------|---------------------|-----------------------|------------------------|-------------------------------------|----------------------------|---------------------------|------------------------|---------------------|
| Temp °F                                    | l                   | CARBON STEEL        | 2                     |                        | CF8M <sup>3</sup><br>ASTM A351-CF8N | ٨                          | l                         | CF3M<br>ASTM A351-CF3N | ٨                   |
| (°C)                                       | Class 150           | Class 300           | Class 600             | Class 150 <sup>4</sup> | Class 300                           | Class 600                  | Class 150                 | Class 300              | Class 600           |
| -20 to 100                                 | 284.3               | 741.1               | 1480.8                | 275.6                  | 719.4                               | 1440.2                     | 230.6                     | 600.5                  | 1199.5              |
| (-29 to 38 C)                              | (19.6 bar)          | (51.1 bar)          | (102.1 bar)           | (19.0 bar)             | (49.6 bar)                          | (99.3 bar)                 | (15.9 bar)                | (41.4 bar)             | (82.7 bar)          |
| 122 F                                      | 278.5               | 726.6               | 1453.3<br>(100 2 hav) | 266.9                  | 697.6                               | 1395.3                     | 221.9                     | 580.2                  | 1160.3              |
| (50 C)<br>212 F                            | (19.2 Ddf)<br>256 7 | (30.1 Ddf)<br>675 0 | (100.2 Ddf)<br>1351.8 | (10.4 Ddf)<br>235 0    | (40.1 Jdf)<br>612.1                 | (90.2 Ddf)<br>1224 1       | (15.5 Ddl)<br>107.0       | (40.0 bdf)<br>504 7    |                     |
| (100 C)                                    | (17.7 bar)          | (46.6 bar)          | (93.2 bar)            | (16.2 bar)             | (42.2 bar)                          | (84.4 bar)                 | (13.3 bar)                | (34.8 bar)             | (69.6 bar)          |
| 302 F                                      | 229.2               | 654.1               | 1308.2                | 214.7                  | 558.4                               | 1116.8                     | 174.0                     | 455.4                  | 910.8               |
| (150 C)                                    | (15.8 bar)          | (45.1 bar)          | (90.2 bar)            | (14.8 bar)             | (38.5 bar)                          | (77.0 bar)                 | (12.0 bar)                | (31.4 bar)             | (62.8 bar)          |
| 392 F                                      | 200.2               | 635.3               | 1270.5                | 198.7                  | 517.8                               | 1034.1                     | 162.4                     | 423.5                  | 845.6               |
| (200 C)                                    | (13.8 bar)          | (43.8 bar)          | (87.6 bar)            | (13.7 bar)             | (35.7 bar)                          | (/1.3 bar)                 | (11.2 bar)                | (29.2 bar)             | (58.3 bar)          |
| 482 F<br>(250 C)                           | 1/3.3<br>(12.1 har) | (41 9 har)          | (83.9 har)            | (12.1 har)             | 484.4<br>(33.4 har)                 | 908.9<br>(66.8 har)        | 152.5<br>(10.5 har)       | (27.5 har)             | (54.9 har)          |
| 572 F                                      | 147.9               | 577.3               | 1154.5                | 147.9                  | 458.3                               | 916.6                      | 145.0                     | 378.5                  | 755.6               |
| (300 C)                                    | (10.2 bar)          | (39.8 bar)          | (79.6 bar)            | (10.2 bar)             | (31.6 bar)                          | (63.2 bar)                 | (10.0 bar)                | (26.1 bar)             | (52.1 bar)          |
| 617 F                                      | 134.9               | 561.3               | 1122.6                | 134.9                  | 448.2                               | 896.3                      | 134.9                     | 369.8                  | 739.7               |
| (325 C)                                    | (9.3 bar)           | (38.7 bar)          | (77.4 bar)            | (9.3 bar)              | (30.9 bar)                          | (61.8 bar)                 | (9.3 bar)                 | (25.5 bar)             | (51.0 bar)          |
| 662 F                                      | 121.8<br>(9.4 har)  | (27.6 har)          | (75.1 bar)            | 121.8<br>(9.4 bar)     | 439.5<br>(20.2 har)                 | 880.4<br>(60.7 har)        | 121.8<br>(9.4 har)        | 364.0<br>(25.1 bar)    | /26.6<br>(50.1 har) |
| 707 F                                      | (0.4 Jdl)<br>107 3  | 527.9               | 1054.4                |                        | (30.3 Dal)<br>433 7                 | (00.7 Jal)<br>867 3        | <u>(0.4 Jdl)</u><br>107 3 | (23.1 Dai)<br>359 7    | (30.1 Dal)<br>717 9 |
| (375 C)                                    | (7.4 bar)           | (36.4 bar)          | (72.7 bar)            | (7.4 bar)              | (29.9 bar)                          | (59.8 bar)                 | (7.4 bar)                 | (24.8 bar)             | (49.5 bar)          |
| 752 F                                      | 94.3                | 503.3               | 1006.6                | 94.3                   | 426.4                               | 854.3                      | 94.3                      | 352.4                  | 704.9               |
| (400 C)                                    | (6.5 bar)           | (34.7 bar)          | (69.4 bar)            | (6.5 bar)              | (29.4 bar)                          | (58.9 bar)                 | (6.5 bar)                 | (24.3 bar)             | (48.6 bar)          |
| 797 F                                      | 79.8                | 417.7               | 834.0                 | 79.8                   | 422.1                               | 845.6                      | 79.8                      | 346.6                  | 691.8               |
| (425 C)                                    | (5.5 bar)           | (28.8 bar)          | (57.5 bar)            | (5.5 bar)              | (29.1 bar)                          | (58.3 bar)                 | (5.5 bar)                 | (23.9 bar)             | (47.7 bar)          |
| (450 ()                                    | (4.6 har)           | (23.0 har)          | (46 0 har)            | (4.6 har)              | (28.8 har)                          | (57 7 har)                 |                           |                        |                     |
| 887 F                                      | 53.7                | 252.4               | 506.2                 | 53.7                   | 416.3                               | 831.1                      |                           |                        |                     |
| (475 C)                                    | (3.7 bar)           | (17.4 bar)          | (34.9 bar)            | (3.7 bar)              | (28.7 bar)                          | (57.3 bar)                 |                           |                        |                     |
| 932 F                                      | 40.6                | 171.1               | 340.8                 | 40.6                   | 409.0                               | 819.5                      |                           |                        |                     |
| (500 C)                                    | (2.8 bar)           | (11.8 bar)          | (23.5 bar)            | (2.8 bar)              | (28.2 bar)                          | (56.5 bar)                 |                           |                        |                     |
| (538 C)                                    | 20.3<br>(1.4 har)   | (5.9 har)           | 1/1.1<br>(11.8 har)   | 20.3<br>(1.4 har)      | 303.3<br>(25.2 har)                 | /25.2<br>(50.0 har)        |                           |                        |                     |
| 1022 F                                     |                     |                     |                       | 20.3                   | 362.6                               | 722.3                      |                           |                        |                     |
| (550 C)                                    |                     |                     |                       | (1.4 bar)              | (25.0 bar)                          | (49.8 bar)                 |                           |                        |                     |
| 1067 F                                     |                     |                     |                       | 20.3                   | 348.1                               | 694.7                      |                           |                        |                     |
| (575 C)                                    |                     |                     |                       | (1.4 bar)              | (24.0 bar)                          | (47.9 bar)                 |                           |                        |                     |
| (600 C)                                    |                     |                     |                       | 20.3<br>(1.4.bar)      | 288.0<br>(10.0 har)                 | $\frac{577.3}{(30.8 har)}$ |                           |                        |                     |
| 1157 F                                     |                     |                     |                       | 20.3                   | 279.2                               | 458.3                      |                           |                        |                     |
| (625 C)                                    |                     |                     |                       | (1.4 bar)              | (15.8 bar)                          | (31.6 bar)                 |                           |                        |                     |
| 1202 F                                     |                     |                     |                       | 20.3                   | 184.2                               | 366.9                      |                           |                        |                     |
| (650 C)                                    |                     |                     |                       | (1.4 bar)              | (12.7 bar)                          | (25.3 bar)                 |                           |                        |                     |
| 124/F                                      |                     |                     |                       | 20.3                   | (10.2 har)                          | 298.8<br>(20.6 har)        |                           |                        |                     |
| 1292 F                                     |                     |                     |                       | 20.3                   | (10.5 Dal)<br>121.8                 | (20.0 Dal)<br>243 7        |                           |                        |                     |
| (700 C)                                    |                     |                     |                       | (1.4 bar)              | (8.4 bar)                           | (16.8 bar)                 |                           |                        |                     |
| 1337 F                                     |                     |                     |                       | 20.3                   | 101.5                               | 203.1                      |                           |                        |                     |
| (725 C)                                    |                     |                     |                       | (1.4 bar)              | (7.0 bar)                           | (14.0 bar)                 |                           |                        |                     |
| 1382 F                                     |                     |                     |                       | 20.3                   | 85.6                                | 169.7<br>(11.7 har)        |                           |                        |                     |
| 1427 F                                     |                     |                     |                       | (1.4 Dar)<br>20 3      | (3.9 Ddf)<br>66 7                   | (11.7 Ddf)<br>130 5        |                           |                        |                     |
| (775 C)                                    |                     |                     |                       | (1.4 bar)              | (4.6 bar)                           | (9.0 bar)                  |                           |                        |                     |
| 1472 F                                     |                     |                     |                       | 17.4                   | 50.8                                | 101.5                      |                           |                        |                     |
| (800 C)                                    |                     |                     |                       | (1.2 bar)              | (3.5 bar)                           | (7.0 bar)                  |                           |                        |                     |
| 1501 F                                     |                     |                     |                       | 14.5                   | 40.6                                | 85.6                       |                           |                        |                     |
| (816C)                                     |                     |                     |                       | (1.0 bar)              | (2.8 bar)                           | (5.9 bar)                  |                           |                        |                     |

1 Ratings per ASME B16.34 - 2009

2 WCB: Upon prolonged exposure to temperatures above 425°C, the carbide phase of steel may be converted to graphite. Permissible, but not recommended for prolonged usage above 425°C.

3 CF8M: At temperatures above 538°C, use only when the carbon content is 0.04% or higher.

4 CF8M (Class 150): Flanged End valve ratings terminate at 538°C

www.apollovalves.com

Customer Service (704) 841-6000



### **Pressure-Temperature Ratings**

|               | Valve Body Rating <sup>1</sup> – psi (bar) |                           |            |            |                                 |            |            |                          |            |  |  |
|---------------|--------------------------------------------|---------------------------|------------|------------|---------------------------------|------------|------------|--------------------------|------------|--|--|
| Temp °F       | A                                          | ALLOY 20<br>STM A351-CN7/ | И          | AS         | HASTELLOY C<br>ASTM A494-CW12MW |            |            | MONEL<br>ASTM A494-M35-1 |            |  |  |
| (°C)          | Class 150                                  | Class 300                 | Class 600  | Class 150  | Class 300                       | Class 600  | Class 150  | Class 300                | Class 600  |  |  |
| -20 to 100    | 230.6                                      | 600.5                     | 1199.5     | 230.6      | 600.5                           | 1199.5     | 230.6      | 600.5                    | 1199.5     |  |  |
| (-29 to 38 C) | (15.9 bar)                                 | (41.4 bar)                | (82.7 bar) | (15.9 bar) | (41.4 bar)                      | (82.7 bar) | (15.9 bar) | (41.4 bar)               | (82.7 bar) |  |  |
| 122 F         | 223.4                                      | 581.6                     | 1164.7     | 226.3      | 588.9                           | 1179.2     | 223.4      | 583.1                    | 1167.6     |  |  |
| (50 C)        | (15.4 bar)                                 | (40.1 bar)                | (80.3 bar) | (15.6 bar) | (40.6 bar)                      | (81.3 bar) | (15.4 bar) | (40.2 bar)               | (80.5 bar) |  |  |
| 212 F         | 195.8                                      | 512.0                     | 1024.0     | 210.3      | 548.2                           | 1096.5     | 200.2      | 520.7                    | 1042.8     |  |  |
| (100 C)       | (13.5 bar)                                 | (35.3 bar)                | (70.6 bar) | (14.5 bar) | (37.8 bar)                      | (75.6 bar) | (13.8 bar) | (35.9 bar)               | (71.9 bar) |  |  |
| 302 F         | 178.4                                      | 464.1                     | 929.7      | 198.7      | 520.7                           | 1039.9     | 187.1      | 488.8                    | 979.0      |  |  |
| (150 C)       | (12.3 bar)                                 | (32.0 bar)                | (64.1 bar) | (13.7 bar) | (35.9 bar)                      | (71.7 bar) | (12.9 bar) | (33.7 bar)               | (67.5 bar) |  |  |
| 392 F         | 163.9                                      | 426.4                     | 851.4      | 188.5      | 491.7                           | 984.8      | 181.3      | 474.3                    | 948.5      |  |  |
| (200 C)       | (11.3 bar)                                 | (29.4 bar)                | (58.7 bar) | (13.0 bar) | (33.9 bar)                      | (67.9 bar) | (12.5 bar) | (32.7 bar)               | (65.4 bar) |  |  |
| 482 F         | 150.8                                      | 394.5                     | 789.0      | 175.5      | 468.5                           | 935.5      | 175.5      | 472.8                    | 945.6      |  |  |
| (250 C)       | (10.4 bar)                                 | (27.2 bar)                | (54.4 bar) | (12.1 bar) | (32.3 bar)                      | (64.5 bar) | (12.1 bar) | (32.6 bar)               | (65.2 bar) |  |  |
| 572 F         | 140.7                                      | 368.4                     | 736.8      | 147.9      | 445.3                           | 892.0      | 147.9      | 472.8                    | 945.6      |  |  |
| (300 C)       | (9.7 bar)                                  | (25.4 bar)                | (50.8 bar) | (10.2 bar) | (30.7 bar)                      | (61.5 bar) | (10.2 bar) | (32.6 bar)               | (65.2 bar) |  |  |
| 617 F         | 134.9                                      | 353.9                     | 707.8      | 134.9      | 436.6                           | 871.7      | 134.9      | 472.8                    | 945.6      |  |  |
| (325 C)       | (9.3 bar)                                  | (24.4 bar)                | (48.8 bar) | (9.3 bar)  | (30.1 bar)                      | (60.1 bar) | (9.3 bar)  | (32.6 bar)               | (65.2 bar) |  |  |
| 662 F         |                                            |                           |            | 121.8      | 426.4                           | 852.8      | 121.8      | 472.8                    | 944.2      |  |  |
| (350 C)       |                                            |                           |            | (8.4 bar)  | (29.4 bar)                      | (58.8 bar) | (8.4 bar)  | (32.6 bar)               | (65.1 bar) |  |  |
| 707 F         |                                            |                           |            | 107.3      | 416.3                           | 832.5      | 107.3      | 469.9                    | 939.8      |  |  |
| (375 C)       |                                            |                           |            | (7.4 bar)  | (28.7 bar)                      | (57.4 bar) | (7.4 bar)  | (32.4 bar)               | (64.8 bar) |  |  |
| 752 F         |                                            |                           |            | 94.3       | 410.5                           | 819.5      | 94.3       | 465.6                    | 931.1      |  |  |
| (400 C)       |                                            |                           |            | (6.5 bar)  | (28.3 bar)                      | (56.5 bar) | (6.5 bar)  | (32.1 bar)               | (64.2 bar) |  |  |
| 797 F         |                                            |                           |            | 79.8       | 401.8                           | 802.1      | 79.8       | 458.3                    | 918.1      |  |  |
| (425 C)       |                                            |                           |            | (5.5 bar)  | (27.7 bar)                      | (55.3 bar) | (5.5 bar)  | (31.6 bar)               | (63.3 bar) |  |  |
| 842 F         |                                            |                           |            | 66.7       | 394.5                           | 789.0      | 66.7       | 390.2                    | 780.3      |  |  |
| (450 C)       |                                            |                           |            | (4.6 bar)  | (27.2 bar)                      | (54.4 bar) | (4.6 bar)  | (26.9 bar)               | (53.8 bar) |  |  |
| 887 F         |                                            |                           |            | 53.7       | 388.7                           | 776.0      | 53.7       | 301.7                    | 601.9      |  |  |
| (475 C)       |                                            |                           |            | (3.7 bar)  | (26.8 bar)                      | (53.5 bar) | (3.7 bar)  | (20.8 bar)               | (41.5 bar) |  |  |
| 932 F         |                                            |                           |            | 40.6       | 381.4                           | 762.9      |            |                          |            |  |  |
| (500 C)       |                                            |                           |            | (2.8 bar)  | (26.3 bar)                      | (52.6 bar) |            |                          |            |  |  |
| 1000 F        |                                            |                           |            | 20.3       | 365.5                           | 725.2      |            |                          |            |  |  |
| (538 C)       |                                            |                           |            | (1.4 bar)  | (25.2 bar)                      | (50.0 bar) |            |                          |            |  |  |

1 Ratings per ASME B16.34 - 2009

| Contact Factory    |
|--------------------|
| INCONEL 625        |
| ASTM A494-GR CW6MC |
| NICKEL 200         |
| ASTM A494-CZ100    |
| TITANIUM           |
| ASTM B367-GR C3    |



#### **Pressure-Temperature Ratings**



**PTFE SEATS – PRESSURE-TEMPERATURE RATINGS** 



CHART 2

**RPTFE SEATS – PRESSURE-TEMPERATURE RATINGS** 



www.**apollovalves**.com

Customer Service (704) 841-6000



#### **Pressure-Temperature Ratings**

**CHART 3** 

55% BRONZE, 5% MOLY - PRESSURE-TEMPERATURE RATINGS



**CHART 4** 

**UHMWPE SEATS – PRESSURE-TEMPERATURE RATINGS** 





#### **Pressure-Temperature Ratings**

**CHART 5** 

**PEEK SEATS – PRESSURE-TEMPERATURE RATINGS** 



**CHART 6** 

12

**CARBON-GRAPHITE SEATS – PRESSURE-TEMPERATURE RATINGS** 



www.**apollovalves**.com

Apollo

Valves

Customer Service (704) 841-6000

#### **Pressure-Temperature Ratings**

**CHART 7** 

**CERAMIC SEATS – PRESSURE-TEMPERATURE RATINGS** 



**CHART 8** 

STEAM RATED SEATS - PRESSURE-TEMPERATURE RATINGS



Apollo Valves

For additional information, submittal sheets and manuals, visit www.apollovalves.com

13

### **Flanged Top Entry Ball Valves**

### **FLANGED VALVE DIMENSIONS**



#### **ANSI 150 CLASS FLANGED TOP ENTRY VALVES**

| Size   | A    | В     | C     | D     | E     | F    | G     | H    | J  |
|--------|------|-------|-------|-------|-------|------|-------|------|----|
| 1/2″   | 0.81 | 2.85  | 5.69  | 3.48  | 5.15  | 1.70 | 2.38  | 0.62 | 4  |
| 3/4″   | 0.81 | 2.31  | 4.62  | 3.54  | 5.15  | 1.76 | 2.75  | 0.62 | 4  |
| 1″     | 0.81 | 2.50  | 5.00  | 3.48  | 5.15  | 1.70 | 3.12  | 0.62 | 4  |
| 1-1/2″ | 1.17 | 3.25  | 6.50  | 4.17  | 5.94  | 1.96 | 3.87  | 0.62 | 4  |
| 2″     | 1.50 | 3.50  | 7.00  | 4.74  | 7.87  | 2.22 | 4.75  | 0.75 | 4  |
| 3″     | 2.25 | 4.00  | 8.00  | 6.60  | 19.12 | 2.93 | 6.00  | 0.75 | 4  |
| 4″     | 3.00 | 4.50  | 9.00  | 8.07  | 19.50 | 3.32 | 7.50  | 0.75 | 8* |
| 6″**   | 4.50 | 7.75  | 15.50 | 10.59 | 36.00 | 4.97 | 9.50  | 0.87 | 8  |
| 8″**   | 6.00 | 9.00  | 18.00 | 14.39 | 47.00 | 6.51 | 11.75 | 0.87 | 8  |
| 10″**  | 7.50 | 10.50 | 21.00 | 15.50 | NA    | NA   | 14.25 | 1.00 | 12 |

\* Top 2 holes in each flange are tapped 5/8-11 UNC-2B

\*\* Gear Operator or Actuation Recommended.

#### **ANSI 300 CLASS FLANGED TOP ENTRY VALVES**



| Size   | A    | В     | C     | D     | E     | F    | G     | H    | J   |
|--------|------|-------|-------|-------|-------|------|-------|------|-----|
| 1/2″   | 0.81 | 2.85  | 5.69  | 3.48  | 5.15  | 1.70 | 2.62  | 0.62 | 4   |
| 3/4″   | 0.81 | 3.00  | 6.00  | 3.63  | 5.15  | 1.86 | 3.25  | 0.75 | 4   |
| 1″     | 0.81 | 3.25  | 6.50  | 3.48  | 5.15  | 1.70 | 3.50  | 0.75 | 4   |
| 1 1/2″ | 1.17 | 3.75  | 7.50  | 4.17  | 5.94  | 1.96 | 4.50  | 0.88 | 4   |
| 2″     | 1.50 | 4.25  | 8.50  | 4.74  | 7.87  | 2.22 | 5.00  | 0.75 | 8   |
| 3″     | 2.25 | 5.56  | 11.13 | 6.60  | 19.12 | 2.93 | 6.63  | 0.88 | 8   |
| 4″     | 3.00 | 6.00  | 12.00 | 8.07  | 19.50 | 3.32 | 7.88  | 0.88 | 8   |
| 6″**   | 4.50 | 7.94  | 15.87 | 10.99 | 36.00 | 4.97 | 10.63 | 0.88 | 12  |
| 8″**   | 6.00 | 9.87  | 19.75 | 14.39 | 47.00 | 6.51 | 13.00 | 1.00 | 12  |
| 12″**  | 9.00 | 12.75 | 25.50 | 18.75 | NA    | NA   | 17.75 | 1.25 | 16* |

\* Top 6 holes in each flange are tapped 1 1/8-8UN-2B.

\*\* Gear Operator or Actuation Recommended.

#### **ANSI 600 CLASS FLANGED TOP ENTRY VALVES**

| Size   | A    | В     | C     | D     | E     | F    | G     | H    | J  |
|--------|------|-------|-------|-------|-------|------|-------|------|----|
| 1/2"   | 0.81 | 3.25  | 6.50  | 4.93  | 8.50  | 1.92 | 2.62  | .62  | 4  |
| 3/4"   | 0.81 | 3.75  | 7.50  | 5.17  | 8.50  | 2.18 | 3.25  | 0.75 | 4  |
| 1"     | 0.81 | 4.25  | 8.50  | 5.23  | 8.50  | 2.21 | 3.50  | 0.75 | 4  |
| 1-1/2" | 1.17 | 4.75  | 9.50  | 6.00  | 12.50 | 2.36 | 4.50  | 0.88 | 4  |
| 2"     | 1.50 | 5.75  | 11.50 | 7.06  | 14.75 | 2.97 | 5.00  | 0.75 | 8  |
| 3"     | 2.25 | 7.00  | 14.00 | 8.82  | 19.12 | 3.47 | 6.63  | 0.88 | 8  |
| 4" **  | 3.00 | 8.50  | 17.00 | 10.45 | 19.12 | 4.15 | 8.50  | 1.00 | 8  |
| 6" **  | 4.50 | 11.00 | 22.00 | NA    | NA    | 5.78 | 11.50 | 1.12 | 12 |

\*\* Gear Operator or Actuation Recommended.

### Socket Weld & NPT Top Entry Valves

### SOCKET WELD VALVE DIMENSIONS



#### **ANSI 300 CLASS SOCKET WELD TOP ENTRY VALVES**

| Size   | A    | В    | C    | D    | E     | F    | G    |
|--------|------|------|------|------|-------|------|------|
| 1/2"   | 0.81 | 2.15 | 5.54 | 3.48 | 5.15  | 1.70 | 0.38 |
| 3/4"   | 0.81 | 1.96 | 3.91 | 3.48 | 5.15  | 1.70 | 0.56 |
| 1"     | 0.81 | 1.96 | 3.91 | 3.48 | 5.15  | 1.70 | 0.50 |
| 1-1/2" | 1.17 | 2.49 | 4.98 | 4.17 | 5.94  | 1.96 | 0.55 |
| 2"     | 1.50 | 2.86 | 5.72 | 4.74 | 7.87  | 2.22 | 0.62 |
| 3"     | 2.25 | 4.15 | 8.29 | 6.60 | 19.12 | 2.93 | 1.00 |

#### ANSI 600 CLASS SOCKET WELD TOP ENTRY VALVES

| Size   | A    | В    | C    | D    | E     | F    | G    |
|--------|------|------|------|------|-------|------|------|
| 1/2"   | 0.81 | 2.37 | 5.98 | 4.93 | 8.50  | 1.92 | 0.38 |
| 3/4"   | 0.81 | 2.18 | 4.35 | 4.93 | 8.50  | 1.92 | 0.56 |
| 1"     | 0.81 | 2.18 | 4.35 | 4.93 | 8.50  | 1.92 | 0.50 |
| 1-1/2" | 1.17 | 2.62 | 5.23 | 5.83 | 12.50 | 2.14 | 0.55 |
| 2"     | 1.50 | 2.99 | 5.98 | 6.63 | 14.75 | 2.54 | 0.62 |



#### **NPT VALVE DIMENSIONS**



#### **ANSI 300 CLASS NPT TOP ENTRY VALVES**

| Size   | A    | В    | C    | D    | E     | F    |
|--------|------|------|------|------|-------|------|
| 1/2"   | 0.81 | 2.15 | 5.54 | 3.48 | 5.15  | 1.70 |
| 3/4"   | 0.81 | 1.96 | 3.91 | 3.48 | 5.15  | 1.70 |
| 1"     | 0.81 | 1.96 | 3.91 | 3.48 | 5.15  | 1.70 |
| 1-1/2" | 1.17 | 2.49 | 4.98 | 4.17 | 5.94  | 1.96 |
| 2"     | 1.50 | 2.86 | 5.72 | 4.74 | 7.87  | 2.22 |
| 3"     | 2.25 | 4.15 | 8.29 | 6.60 | 19.12 | 2.93 |

#### **ANSI 600 CLASS NPT TOP ENTRY VALVES**

| Size   | A    | В    | C    | D    | E     | F    |
|--------|------|------|------|------|-------|------|
| 1/2"   | 0.81 | 2.37 | 5.98 | 4.93 | 8.50  | 1.92 |
| 3/4"   | 0.81 | 2.18 | 4.35 | 4.93 | 8.50  | 1.92 |
| 1"     | 0.81 | 2.18 | 4.35 | 4.93 | 8.50  | 1.92 |
| 1-1/2" | 1.17 | 2.62 | 5.23 | 5.83 | 12.50 | 2.14 |
| 2"     | 1.50 | 2.99 | 5.98 | 6.63 | 14.75 | 2.54 |



### **Buttweld Top Entry Valves**

### **BUTTWELD VALVE DIMENSIONS**



#### **ANSI 300 CLASS BUTTWELD\* TOP ENTRY VALVES**

| Size   | A    | В     | C     | D     | E     | F    |
|--------|------|-------|-------|-------|-------|------|
| 1/2"   | 0.81 | 2.75  | 5.50  | 3.48  | 5.15  | 1.70 |
| 3/4"   | 0.81 | 3.00  | 6.00  | 3.48  | 5.15  | 1.70 |
| 1"     | 0.81 | 3.25  | 6.50  | 3.66  | 5.15  | 1.88 |
| 1-1/2" | 1.17 | 3.75  | 7.50  | 4.22  | 5.94  | 2.01 |
| 2"     | 1.50 | 4.25  | 8.50  | 5.02  | 7.87  | 2.50 |
| 3"     | 2.25 | 5.56  | 11.13 | 6.60  | 19.12 | 2.93 |
| 4"     | 3.00 | 6.00  | 12.00 | 8.07  | 19.50 | 3.32 |
| 6"**   | 4.50 | 7.94  | 15.88 | 10.59 | 36.00 | 4.97 |
| 8"**   | 6.00 | 10.25 | 20.50 | 14.39 | 47.00 | 6.51 |

\* Available in Schedule 10, 40 and 80 where appropriate.

\*\* Gear Operator or Actuation Recommended.

#### ANSI 600 CLASS BUTTWELD\* TOP ENTRY VALVES

|   | Size        |   |
|---|-------------|---|
|   | 1/2"        |   |
|   | 3/4"        |   |
|   | 1"          |   |
|   | 1 1/2"      |   |
|   | 2"          |   |
|   | 3"          |   |
|   | 4" **       |   |
|   | 6" **       |   |
|   | * Available | 2 |
|   | ** Gear Op  | ) |
| в |             |   |

| Size   | A    | В     | C     | D     | E     | F    |
|--------|------|-------|-------|-------|-------|------|
| 1/2"   | 0.81 | 2.75  | 5.50  | 4.93  | 8.50  | 1.92 |
| 3/4"   | 0.81 | 3.75  | 7.50  | 5.17  | 8.50  | 2.16 |
| 1"     | 0.81 | 4.25  | 8.50  | 5.23  | 8.50  | 2.22 |
| 1 1/2" | 1.17 | 4.75  | 9.50  | 6.07  | 12.50 | 2.38 |
| 2"     | 1.50 | 5.75  | 11.50 | 7.09  | 14.75 | 3.00 |
| 3"     | 2.25 | 7.00  | 14.00 | 8.84  | 19.50 | NA   |
| 4" **  | 3.00 | 8.50  | 17.00 | 10.33 | 36.00 | NA   |
| 6" **  | 4.50 | 11.00 | 22.00 | NA    | NA    | NA   |

\* Available in Schedule 40 and 80 where appropriate.

\* Gear Operator or Actuation Recommended.

www.**apollovalves**.com

Valves

### Flanged Top Entry Full Port Dimensional Data



#### **ANSI 150 CLASS FULL PORT FLANGED TOP ENTRY VALVES**

| Size   | A    | В     | C     | D     | E     | F    | G     | H   | J  |
|--------|------|-------|-------|-------|-------|------|-------|-----|----|
| 1″     | 1.17 | 3.50  | 7.00  | 4.27  | 5.94  | 2.05 | 3.12  | .62 | 4  |
| 1-1/2″ | 1.50 | 4.37  | 8.75  | 5.05  | 7.87  | 2.51 | 3.87  | .62 | 4  |
| 2″     | 2.25 | 5.25  | 10.50 | 7.61  | 19.12 | 3.23 | 4.75  | .62 | 4  |
| 3″     | 3.00 | 6.75  | 13.50 | 9.33  | 19.50 | 3.80 | 6.00  | .75 | 4  |
| 4″     | 4.50 | 8.50  | 17.00 | 12.32 | 36.00 | 5.39 | 7.50  | .75 | 8  |
| 6″     | 6.00 | 10.75 | 21.50 | 15.57 | 43.00 | 6.67 | 9.50  | .87 | 8  |
| 8″     | 8.00 | 12.25 | 24.50 | 18.32 | NA    | 9.39 | 11.75 | .87 | 8* |

\* Top 2 Holes in each flange are tapped 3/4-10 UNC-2B

#### ANSI 300 CLASS FULL PORT FLANGED TOP ENTRY VALVES

| Size   | A    | В     | C     | D     | E     | F    | G     | H    | J   |
|--------|------|-------|-------|-------|-------|------|-------|------|-----|
| 1″     | 1.17 | 3.75  | 7.50  | 4.27  | 5.94  | 2.08 | 3.50  | .75  | 4   |
| 1-1/2″ | 1.50 | 4.75  | 9.50  | 5.05  | 7.87  | 2.55 | 4.50  | .87  | 4   |
| 2″     | 2.25 | 5.56  | 11.13 | 7.61  | 19.12 | 3.27 | 5.00  | .75  | 8   |
| 3″     | 3.00 | 7.62  | 15.25 | 9.33  | 19.50 | 3.91 | 6.63  | .87  | 8   |
| 4″     | 4.50 | 9.00  | 18.00 | 12.32 | 36.00 | 5.45 | 7.88  | .87  | 8   |
| 6″     | 6.00 | 11.00 | 22.00 | 15.57 | 43.00 | 6.70 | 10.63 | .87  | 12  |
| 8″     | 8.00 | 13.50 | 27.00 | 18.32 | NA    | 9.54 | 13.00 | 1.00 | 12* |

\* Top 2 Holes in each flange are tapped 7/8-9 UNC-2B

#### ANSI 600 CLASS FULL PORT FLANGED TOP ENTRY VALVES

| Size   | A    | В     | C     | D     | E     | F     | G     | H    | J   |
|--------|------|-------|-------|-------|-------|-------|-------|------|-----|
| 1″     | 1.17 | 5.00  | 10.00 | 6.06  | 12.50 | 2.40  | 3.50  | .75  | 4   |
| 1-1/2″ | 1.50 | 6.25  | 12.50 | 7.15  | 14.75 | 3.06  | 4.50  | .87  | 4   |
| 2″     | 2.25 | 6.50  | 13.00 | 9.76  | 19.12 | 3.70  | 5.00  | .75  | 8   |
| 3″     | 3.00 | 8.75  | 17.50 | 11.45 | 19.50 | 4.48  | 6.63  | .87  | 8   |
| 4″     | 4.50 | 10.00 | 20.00 | 12.44 | NA    | 6.13  | 8.50  | 1.00 | 8   |
| 6″     | 6.00 | 13.00 | 26.00 | 15.28 | NA    | 7.50  | 11.50 | 1.12 | 12  |
| 8″     | 8.00 | 15.62 | 31.25 | 18.58 | NA    | 11.42 | 13.75 | 1.25 | 12* |

\* Top 2 Holes in each flange are tapped 1-1/8 UN-2B



### **Bonnet Dimensions for Actuator Mounting**



#### Figure 1



Figure 2

(⊕)

Figure 3

NOTE: Valves are shown in the Closed Position.

N STUDS

# 1/2" 1 3/4" 1 1" 1 1" 1 1-1/2" 1

### ANSI 150/300 CLASS SOCKET WELD, NPT & BUTTWELD VALVES

| Size   | Fig. No. | A    | В    | C    | D     | E     | F     | G     |
|--------|----------|------|------|------|-------|-------|-------|-------|
| 1/2″   | 1        | 1.30 | 1.00 | .77  | .500  | 2.125 | 1.062 | 1.812 |
| 3/4″   | 1        | 1.30 | 1.00 | .77  | .500  | 2.125 | 1.062 | 1.812 |
| 1″     | 1        | 1.30 | 1.00 | .77  | .500  | 2.125 | 1.062 | 1.812 |
| 1-1/2″ | 1        | 2.04 | 1.68 | .99  | .625  | 2.812 | 1.406 | 2.250 |
| 2″     | 1        | 2.39 | 1.91 | 1.06 | .750  | 3.375 | 1.687 | 2.750 |
| 3″     | 1        | 3.27 | 2.66 | 1.55 | 1.125 | 4.000 | 2.000 | 4.875 |
| 4″     | 3        | 4.66 | 4.11 | 2.24 | 1.500 | 6.375 | 3.188 | 3.750 |
| 6″     | 3        | 4.88 | 4.15 | 1.96 | 2.000 | 9.750 | 4.875 | 4.500 |
| 8″     | 3        | 5.77 | 4.79 | 2.56 | 2.36  | 12.06 | 6.031 | 7.375 |

| Size   | Fig. No. | H     | J     | K   | L    | М    | N       |
|--------|----------|-------|-------|-----|------|------|---------|
| 1/2″   | 1        | .906  | .292  | .36 | 1.00 | NA   | 5/16-18 |
| 3/4″   | 1        | .906  | .292  | .36 | 1.00 | NA   | 5/16-18 |
| 1″     | 1        | .906  | .292  | .36 | 1.00 | NA   | 5/16-18 |
| 1-1/2″ | 1        | 1.125 | .417  | .36 | 1.25 | NA   | 3/8-16  |
| 2″     | 1        | 1.375 | .482  | .52 | 1.50 | NA   | 1/2-13  |
| 3″     | 1        | 2.437 | .730  | .72 | 2.00 | NA   | 5/8-11  |
| 4″     | 3        | 1.875 | .970  | NA  | NA   | 6.00 | 9/16-12 |
| 6″     | 3        | 2.250 | 1.380 | NA  | NA   | NA   | 3/4-10  |
| 8″     | 3        | 3.688 | 1.755 | NA  | NA   | 7.94 | 1-8     |

#### ANSI 600 CLASS SOCKET WELD, NPT & BUTTWELD VALVES

|        |          |       | •    |      |      |       |         |       |
|--------|----------|-------|------|------|------|-------|---------|-------|
| Size   | Fig. No. | A     | В    | C    | D    | E     | F       | G     |
| 1/2″   | 2        | 2.48  | 2.06 | .76  | .625 | 2.125 | 1.062   | 1.816 |
| 3/4″   | 2        | 2.48  | 2.06 | .76  | .625 | 2.125 | 1.062   | 1.816 |
| 1″     | 2        | 2.48  | 2.06 | .76  | .625 | 2.125 | 1.062   | 1.816 |
| 1-1/2″ | 3        | 3.48  | 3.06 | 1.03 | .750 | 2.814 | 1.407   | 2.250 |
| 2″     | 3        | 3.95  | 3.47 | 1.03 | .875 | 3.370 | 1.685   | 2.750 |
| Size   | Fig. No. | Н     | J    | K    | L    | м     | N       |       |
| 1/2″   | 2        | .908  | .412 | .36  | 1.00 | NA    | 7/16-18 |       |
| 3/4″   | 2        | .908  | .412 | .36  | 1.00 | NA    | 7/16-18 |       |
| 1″     | 2        | .908  | .412 | .36  | 1.00 | NA    | 7/16-18 |       |
| 1-1/2″ | 3        | 1.125 | .475 | .36  | 1.25 | NA    | 7/16-14 |       |
| 2″     | 3        | 1.375 | .535 | .52  | 1.50 | NA    | 1/2-13  |       |



\* Stem rises as the packing is adjusted. Allow sufficient clearances.

STANDARD BONNET

#### www.**apollovalves**.com



18

### **Dimensions for Actuator Pad Style Mounting**







NOTE: Valves are shown in the Closed Position.



#### **CLASS 600 BUTTWELD VALVES**

|   | 3″     | 4″     | 6″     |
|---|--------|--------|--------|
| Α | 2.50   | 2.90   | 4.19   |
| В | 5.96   | 7.36   | 7.91   |
| C | 1.54   | 2.25   | 1.34   |
| D | 1.125  | 1.500  | 2.000  |
| E | 8.620  | 11.000 | 15.000 |
| F | 4.310  | 5.500  | 7.500  |
| G | 2.330  | 2.800  | 4.160  |
| Н | 1.150  | 1.400  | 2.130  |
| J | 0.730  | 0.970  | 1.380  |
| K | 7.56   | 9.38   | 12.88  |
| L | 1/2-13 | 1/2-13 | 3/4-10 |
| М | 0.61   | 0.75   | 1.00   |
| N | 8.45   | 10.25  | 12.10  |

#### **CLASS 150 FLANGED VALVES**

|   | 3/4″    | 1″      | 1-1/2″  | 2″      | 3″     | 4″      | 6″      | 8″     | 10″    |
|---|---------|---------|---------|---------|--------|---------|---------|--------|--------|
| Α | 4.06    | 4.43    | 5.75    | 6.24    | 7.18   | 8.19    | 14.25   | 16.75  | 19.75  |
| В | 2.03    | 2.21    | 2.88    | 3.12    | 3.59   | 4.09    | 7.13    | 8.38   | 9.88   |
| C | 1.75    | 1.75    | 1.75    | 2.25    | 3.50   | 4.00    | 4.00    | 5.00   | 7.00   |
| D | 0.88    | 0.88    | 0.88    | 1.13    | 1.75   | 2.00    | 2.00    | 2.50   | 3.50   |
| E | 0.70    | 0.62    | 1.37    | 1.48    | 2.32   | 3.33    | 4.22    | 5.28   | 6.50   |
| F | 3.06    | 3.00    | 4.00    | 4.61    | 6.20   | 7.98    | 9.85    | 12.28  | 15.50  |
| G | 2.36    | 2.38    | 2.63    | 3.13    | 3.88   | 4.63    | 5.63    | 7.00   | 9.00   |
| Н | 0.77    | 0.77    | 0.99    | 1.06    | 1.55   | 2.24    | 1.96    | 2.56   | 2.90   |
| J | 5/16-18 | 5/16-18 | 5/16-18 | 5/16-18 | 3/8-16 | 7/16-14 | 7/16-14 | 1/2-13 | 3/4-10 |
| K | 0.48    | 0.48    | 0.47    | 0.47    | 0.56   | 0.66    | 0.50    | 0.66   | 1.25   |
| L | 0.292   | 0.292   | 0.417   | 0.482   | 0.730  | 0.970   | 1.380   | 1.755  | 2.030  |
| М | 0.500   | 0.500   | 0.625   | 0.750   | 1.125  | 1.500   | 2.000   | 2.360  | 2.933  |

#### **CLASS 300 FLANGED VALVES**

|   | 3/4″    | 1″      | 1-1/2″  | 2″      | 3″     | 4″      | 6″      | 8″     |
|---|---------|---------|---------|---------|--------|---------|---------|--------|
| Α | 5.31    | 5.75    | 6.63    | 7.56    | 9.88   | 10.69   | 14.31   | 18.06  |
| В | 2.66    | 2.88    | 3.31    | 3.78    | 4.94   | 5.34    | 7.15    | 9.03   |
| C | 1.75    | 1.75    | 1.75    | 2.25    | 3.50   | 4.00    | 4.00    | 5.00   |
| D | 0.88    | 0.88    | 0.88    | 1.13    | 1.75   | 2.00    | 2.00    | 2.50   |
| E | 0.70    | 0.62    | 0.81    | 1.23    | 1.95   | 2.83    | 3.47    | 4.53   |
| F | 3.15    | 3.00    | 4.00    | 4.61    | 6.20   | 7.98    | 9.85    | 12.28  |
| G | 2.45    | 2.38    | 3.19    | 3.38    | 4.25   | 5.13    | 6.38    | 7.75   |
| Н | 0.77    | 0.77    | 0.99    | 1.06    | 1.55   | 2.24    | 1.96    | 2.56   |
| J | 5/16-18 | 5/16-18 | 5/16-18 | 5/16-18 | 3/8-16 | 7/16-14 | 7/16-14 | 1/2-13 |
| K | 0.48    | 0.48    | 0.47    | 0.47    | 0.56   | 0.66    | 0.50    | 0.66   |
| L | 0.292   | 0.292   | 0.417   | 0.482   | 0.730  | 0.970   | 1.380   | 1.755  |
| М | 0.500   | 0.500   | 0.625   | 0.750   | 1.125  | 1.500   | 2.000   | 2.360  |

#### **CLASS 600 FLANGED VALVES**

|   | 3/4″   | 1″     | 1-1/2″ | 2″     | 3″     | 4″     | 6″     |
|---|--------|--------|--------|--------|--------|--------|--------|
| A | 6.32   | 7.25   | 8.06   | 9.94   | 12.25  | 15.00  | 19.62  |
| В | 3.16   | 3.63   | 4.03   | 4.97   | 6.13   | 7.50   | 9.81   |
| C | 2.38   | 2.38   | 2.75   | 3.50   | 4.75   | 5.50   | 7.00   |
| D | 1.19   | 1.19   | 1.38   | 1.75   | 2.38   | 2.75   | 3.50   |
| E | 2.21   | 2.15   | 2.83   | 3.54   | 4.18   | 4.88   | 4.97   |
| F | 4.65   | 4.71   | 6.08   | 6.92   | 8.43   | 10.38  | 12.09  |
| G | 2.44   | 2.56   | 3.25   | 3.38   | 4.25   | 5.50   | 7.12   |
| Н | 0.76   | 0.76   | 1.27   | 1.03   | 1.54   | 2.25   | 1.34   |
| J | 3/8-16 | 3/8-16 | 1/2-13 | 1/2-13 | 1/2-13 | 1/2-13 | 3/4-10 |
| K | 0.47   | 0.47   | 0.66   | 0.66   | 0.66   | 0.75   | 1.00   |
| L | 0.412  | 0.412  | 0.475  | 0.535  | 0.730  | 0.970  | 1.380  |

Apollo Valves

### Flanged Top Entry Full Port Actuator Mounting Data









-5/8"-11 X .75" DEEP (8 HOLES)

Figure 2

-1

#### ANSI 150 CLASS FULL PORT FLANGED TOP ENTRY VALVES

| Size   | A     | В     | C    | D    | E    | EE   | F     | G    | GG    | Н    | J       | K   | L      | М      |
|--------|-------|-------|------|------|------|------|-------|------|-------|------|---------|-----|--------|--------|
| 1″     | 6.44  | 3.22  | 1.75 | .88  | 1.71 | NA   | 4.09  | 2.63 | NA    | 1.06 | 5/16-18 | .47 | .482   | .750   |
| 1-1/2″ | 8.06  | 4.03  | 1.75 | .88  | 2.27 | NA   | 4.90  | 2.63 | NA    | 1.06 | 5/16-18 | .47 | .482   | .750   |
| 2″     | 9.68  | 4.84  | 2.25 | 1.13 | 3.37 | NA   | 6.50  | 3.13 | NA    | 1.55 | 5/16-18 | .47 | .730   | 1.125  |
| 3″     | 12.48 | 6.24  | 3.50 | 1.75 | 4.58 | NA   | 8.46  | 3.88 | NA    | 2.24 | 3/8-16  | .56 | .970   | 1.500  |
| 4″     | 15.81 | 7.91  | 4.00 | 2.00 | 5.23 | NA   | 10.27 | 5.04 | NA    | 1.96 | 7/16-14 | .66 | 1.380  | 2.000  |
| 6″     | 20.25 | 10.13 | 4.00 | 2.00 | 6.13 | 2.73 | 12.29 | 6.16 | 9.56  | 1.00 | 7/16-14 | .66 | Fig. 1 | Fig. 1 |
| 8″     | NA    | NA    | NA   | NA   | NA   | 5.77 | NA    | NA   | 12.37 | NA   | NA      | NA  | Fig 2  | Fig. 2 |

#### ANSI 300 CLASS FULL PORT FLANGED TOP ENTRY VALVES

| Size   | A     | В     | C    | D    | E    | EE   | F     | G    | GG    | H    | J       | K   | L      | М      |
|--------|-------|-------|------|------|------|------|-------|------|-------|------|---------|-----|--------|--------|
| 1″     | 6.69  | 3.35  | 1.75 | .88  | 1.74 | NA   | 4.12  | 2.38 | NA    | .99  | 5/16-18 | .48 | .417   | .625   |
| 1-1/2″ | 8.63  | 4.31  | 1.75 | .88  | 1.75 | NA   | 4.94  | 3.19 | NA    | 1.06 | 5/16-18 | .47 | .482   | .750   |
| 2″     | 9.90  | 4.95  | 2.25 | 1.13 | 3.16 | NA   | 6.54  | 3.38 | NA    | 1.55 | 5/16-18 | .47 | .730   | 1.125  |
| 3″     | 13.68 | 6.84  | 3.50 | 1.75 | 4.32 | NA   | 8.57  | 4.25 | NA    | 2.24 | 3/8-16  | .56 | .970   | 1.500  |
| 4″     | 16.50 | 8.25  | 4.00 | 2.00 | 5.20 | NA   | 10.33 | 5.13 | NA    | 1.96 | 7/16-14 | .66 | 1.380  | 2.000  |
| 6″     | 20.38 | 10.19 | 4.00 | 2.00 | 5.41 | 2.73 | 12.32 | 6.91 | 9.59  | 1.00 | 7/16-14 | .66 | Fig. 1 | Fig. 1 |
| 8″     | NA    | NA    | NA   | NA   | NA   | 5.77 | NA    | NA   | 12.52 | NA   | NA      | NA  | Fig. 2 | Fig. 2 |

#### ANSI 600 CLASS FULL PORT FLANGED TOP ENTRY VALVES

| Size   | A     | В     | C    | D    | E    | EE   | F     | G    | GG    | H    | J      | K    | L      | М      |
|--------|-------|-------|------|------|------|------|-------|------|-------|------|--------|------|--------|--------|
| 1″     | 8.75  | 4.38  | 2.38 | 1.19 | 3.56 | NA   | 6.12  | 2.56 | NA    | 1.27 | 3/8-16 | .47  | .475   | .750   |
| 1-1/2″ | 11.06 | 5.53  | 2.75 | 1.38 | 3.75 | NA   | 7.00  | 3.25 | NA    | 1.03 | 1/2-13 | .66  | .535   | .875   |
| 2″     | 11.38 | 5.69  | 3.50 | 1.75 | 5.20 | NA   | 8.66  | 3.46 | NA    | 1.54 | 1/2-13 | .66  | .730   | 1.125  |
| 3″     | 15.56 | 7.78  | 4.75 | 2.38 | 6.45 | NA   | 10.70 | 4.25 | NA    | 2.25 | 1/2-13 | .66  | .970   | 1.500  |
| 4″     | 17.75 | 8.88  | 5.50 | 2.75 | 6.94 | NA   | 12.44 | 5.50 | NA    | 1.34 | 1/2-13 | .75  | 1.380  | 2.000  |
| 6″     | 23.44 | 11.72 | 7.00 | 3.50 | 8.21 | NA   | 15.33 | 7.12 | NA    | 2.56 | 3/4-10 | 1.00 | 1.380  | 2.360  |
| 8″     | NA    | NA    | NA   | NA   | NA   | 5.77 | NA    | NA   | 12.78 | NA   | NA     | NA   | Fig. 2 | Fig. 2 |

www.**apollovalves**.com



### **Extended Bonnets**



FEATURES:

- Extended bonnets for Apollo<sup>®</sup> Top Entry Ball Valves are available for sizes 1/2" through 8" in classes 150 and 300. Extended bonnets are standard for all class 600 valves.
- These bonnets provide excellent performance in high temperature or semi cryogenic applications.
- This bonnet design places the stem seals further away from the process flow thereby maintaining temperatures closer to ambient.
- Insulation can be applied to the bonnet reducing the chance of disturbance as would be caused by a stem extension. If and when stem leakage occurs it can be immediately observed and corrective action taken without insulation removal.
- A valuable feature of the Extended Bonnet is that it is field retrofitable. In addition to being able to order valves with several bonnet styles direct from the factory, kits are available that are pre-assembled with the stem, bonnet, packings, glands and jam nut installed and properly torqued for dependable performance. Contact the factory for kit part numbers for any specific valve or application.

#### **MATERIALS OF CONSTRUCTION:**

Extended bonnets are available in the same broad selection of materials of construction as those illustrated on pages 4 and 5 for the bonnet, stem, stem packings, packing gland, nuts and body seals.

| Size   | A    | В    | C    |
|--------|------|------|------|
| 3/4"   | 2.55 | 2.25 | 0.77 |
| 1"     | 2.55 | 2.25 | 0.77 |
| 1-1/2" | 3.54 | 3.18 | 0.99 |
| 2"     | 4.14 | 3.66 | 1.06 |
| 3"     | 5.27 | 4.66 | 1.55 |
| 4"     | 6.66 | 6.11 | 2.24 |
| 6"     | 6.88 | 6.15 | 1.96 |
| 8"     | 7.77 | 6.79 | 2.56 |

#### CLASS 150 & 300 EXTENDED BONNETS "EB"



### **Fugitive Emissions Stem Seals**





Following a detailed testing program it has been found that the double stack of RPTFE Chevron style packings clearly outperformed the other contenders evaluated. In applications where this material is acceptable, it would be the hands-down choice. However, when resistance to high temperatures is a must, such as in a valve requiring fire-safe performance, then the Grafoil<sup>®</sup> packings must be considered.

With any of the styles of grafoil packings tested it is reasonable to expect that over the anticipated life of the packing (100,000 cycles) two (2) packing adjustments will be required. From the testing, the first adjustment could be anticipated around the 20,000 cycle point and the second some time after the 60,000 cycle mark. The primary offering in Grafoil<sup>®</sup> fugitive emissions style packings for Apollo<sup>®</sup> Top Entry Ball Valves will be the double stack arrangement provided by Garlock<sup>®</sup> under the trade name EVSP.

The results are presented here in 5000 cycle increments. Measurements were taken more frequently and those other data points showed no evidence of any trends in the growth of a leak from a minor status to one requiring adjustment. Through process monitoring, statistical data can be used to establish preventive maintenance schedules showing packing adjustment intervals.

#### LEAKAGE RATE IN PPM METHANE

| Cycle Count | Double Stack<br>RPTFE Chevrons | Double Stack Grafoil® |
|-------------|--------------------------------|-----------------------|
| 5000        | 0                              | 0                     |
| 10,000      | 0                              | 0                     |
| 15,000      | 0                              | 0                     |
| 20,000      | 4                              | 1                     |
| 25,000      | 3                              | 42*                   |
| 30,000      | 4                              | 0                     |
| 35,000      | 18                             | 0                     |
| 40,000      | 14                             | 0                     |
| 45,000      | 13                             | 2                     |
| 50,000      | 3                              | 3                     |
| 55,000      | 4                              | 3                     |
| 60,000      | 8                              | 3                     |
| 65,000      | 14                             | 4                     |
| 70,000      | 30                             | 92*                   |
| 75,000      | 24                             | 0                     |
| 80,000      | 24                             | 0                     |
| 85,000      | 23                             | 2                     |
| 90,000      | 52*                            | 11                    |
| 95,000      | 0                              | 0                     |
| 100,000     | 0                              | 0                     |

\*Indicates a packing adjustment was made.

Grafoil<sup>®</sup> is a registered trademark of Union Carbide.

Garlock<sup>®</sup> is a registered trademark of Coltec Industries.

www.**apollovalves**.com



### **Fugitive Emissions Bonnet Dimensions**



#### FEATURES:

- Two types of the Fugitive Emissions Bonnet are available. The first type intended for manual operation is not live loaded. Testing has shown that live loading only becomes necessary in high cycle applications. This leads to the second type, the live loaded version. This second type not only is more appropriate for unattended automated operations and high cycle applications, it is also well suited for applications involving thermal cycling.
- Two styles of packings are available for the Fugitive Emissions bonnet. The primary offering is a double stack of RPTFE Chevrons. The second option is a specially contoured double stack of "Die Formed" graphoil rings.
- The lower, primary packing stack is pressure activated as well as mechanically loaded. The upper packing stack acts as back-up seals in the case of primary seal failure. A purge port is available between the two stacks for the purpose of detecting primary seal leakage.
- One of the most valuable features of the Fugitive Emissions Bonnet is that it is field retrofitable to existing installations. In addition to being able to order Top Entry valves with any of three bonnet styles direct from the factory, kits are available that are pre-assembled with the stem, bonnet, packings, glands and jam nut installed and properly torqued for dependable performance. In the case where the service or regulations change and a design upgrade is required, the Top Entry Ball valve is designed to accommodate these changes. Contact the factory for kit part numbers for any specific valve or application.

#### MATERIALS OF CONSTRUCTION:

Extended bonnets are available in the same materials of construction as those illustrated on pages 4 and 5 for the bonnet, stem, stem packings, packing gland, nuts and body seals.

#### CLASS 150 & 300 VALVES "FG" AND "FL" OPTIONS FUGITIVE EMISSIONS BONNET

|   | 3/4" | 1"   | 1-1/2" | 2"   | 3"   | 4"   | 6"   |
|---|------|------|--------|------|------|------|------|
| A | 2.55 | 2.55 | 3.54   | 4.14 | 5.27 | 6.66 | 6.88 |
| В | 2.25 | 2.25 | 3.18   | 3.66 | 4.66 | 6.11 | 6.15 |
| C | 0.77 | 0.77 | 0.99   | 1.06 | 1.55 | 2.24 | 1.96 |

#### CLASS 150 & 300 VALVES "FC" AND "FP" OPTIONS LIVE LOADED FUGITIVE EMISSIONS BONNET

|   | 3/4" | 1"   | 1-1/2" | 2"   | 3"   | 4"   | 6"   |
|---|------|------|--------|------|------|------|------|
| А | 3.41 | 3.41 | 3.90   | 5.20 | 6.31 | 7.37 | 8.03 |
| В | 3.11 | 3.11 | 3.54   | 4.72 | 5.70 | 6.80 | 7.30 |
| C | 0.98 | 0.98 | 0.85   | 1.35 | 1.47 | 2.27 | 1.30 |

#### CLASS 600 VALVES "FC" AND "FP" OPTIONS LIVE LOADED FUGITIVE EMISSIONS BONNET

|   | 3/4" | 1"   | 1-1/2" | 2"   |
|---|------|------|--------|------|
| A | 3.27 | 3.27 | 4.54   | 5.03 |
| В | 2.85 | 2.85 | 4.12   | 4.55 |
| C | 0.99 | 0.99 | 1.04   | 1.10 |



#### **Steam Jacketed Top Entry Valves**



Conbraco's Apollo<sup>®</sup> Top Entry Ball Valves are ideally suited for jacketed applications. The top entry concept allows for continued access to stem packings and valve internals for ease of maintenance without disturbing the jacket itself or removing the valve from the pipeline.

Partial jacketing (Option "PJ") may be used on standard valves. Partial jacketing is applied just to the center section of the valve and does not incorporate the neck area or flanges of the valve. It is generally specified to allow the use of standard flanges and retain conventional flange bolting. Fully jacketed, standard flange valves have modified flanges with blind tapped stud holes in place of the ordinary through holes.

Welded full jacketing may be applied to valves with standard flanges (Option "FS") or oversize flanges (Option "FO"). Valves and jacketing can be supplied in a variety of materials. Common materials are stainless valves with stainless jackets, but exotic combinations such as Alloy 20 valves with carbon steel flanges and carbon steel jacketing have been supplied to meet the performance and cost requirements for specific applications.

Clamp-on jacketing (Option "CJ") offers flexibility not available in the other configurations. Clamp-on jacketing can be applied to valves already in service, or can be removed and reinstalled on a replacement valve or another similar valve in another application. Clamp-on jackets can be supplied as a weldment or in cast aluminum. A heat transfer compound can be applied between the clamp-on jacket and valve to improve its efficiency.

Combining these jacketed valves with extended bonnets for safe convenient operation, and adding carbon graphite seats or ceramic balls and seats enables the valve to handle a broad range of viscous materials and temperatures.

www.**apollovalves**.com

### **Special Applications**

#### **"FIRE-SAFE" REQUIREMENTS**

Two seat and several seal arrangements are available to address valves in applications where performance during and immediately after a fire are a concern. The #7 (PTFE) and "A" (RPTFE) seat configurations offer "tested" fire-safe performance. Flexible graphite in the form of diecut, die-formed or spiral wound gaskets are available for bonnet seals. Die-formed Grafoil<sup>®</sup> in various configurations provide the stem seals.

#### **ABRASIVE & EROSIVE SERVICES**

"Soft Seated" valves for abrasive services feature seat inserts completely confined by metallic components. Some designs feature inner and outer seat support rings, where the inner ring helps shield the seat insert from abrasives in the service. Other designs feature one piece seatholders which completely confine the seat insert and provide the same function in protecting the soft seat from abrasive particles in the flow stream.



Apollo ANSI Class 150 Flanged 8-inch Titanium Top Entry Ball Valve

In addition to the seat configuration options, resilient and rigid seat materials are available. The rigid seat choices include carbon-graphite, ceramic, peek, and carbon reinforced peek. The seats and the ball are both produced from ceramic in the one case. Any of these seats provide improved resistance to abrasion and erosion and additionally extend the potential service range to 1000°F.

For steam services, the #5 seat, a RPTFE containing 55% bronze and 5% molybdenum disulfide, is an excellent choice as is the #4 carbon-graphite seat.

#### **CHLORINE SERVICE**

Valves intended for service in dry chlorine require specific alloy selections, design features, cleaning and testing procedures. In accordance with the guidelines established by "The Chlorine Institute", Pamphlet 6-13th Edition (April 1993), Hastelloy trimmed carbon steel valves (model numbers starting with "CH") are suggested, and M35-1 trimmed carbon steel valves (model numbers beginning "CM") are the alternative for dry chlorine. All Hastelloy or M35-1 valves are also available, however, stainless steel valves or components are not recommended.

Selecting the required "HO" feature insures a valve that has been vented, cleaned, and tested to comply with the requirements of The Chlorine Institute Pamphlet 6.

#### **OXYGEN SERVICE**

For this application, cleanliness is of utmost importance. Apollo Top Entry Valves specified for oxygen service (option "PO") are subjected to rigorous preparation procedures including special pre-cleaning and inspection followed by ultrasonic cleaning and more intense inspection. All to insure that the finished valve is free of burrs and sharp edges as well as cleaned of hydrocarbon residues and particulate matter. Once valves destined for oxygen service enter Conbraco's clean room for preparation, they do not leave until they have been cleaned, assembled, thoroughly tested, inspected, tagged and bagged to meet customer requirements.

All Apollo Top Entry Valves have "anti-static" features designed in. Valves for oxygen service must also be fitted with PTFE or RPTFE seats and packing. When planning to insulate valves, consider specifying one of our extended bonnet options.

#### **HIGH TEMPERATURE SERVICE**

For any applications utilizing graphite, carbon graphite, peek, carbon reinforced peek, or ceramic seats, a ball stop should be incorporated into the valve design (option "RS"). This option is suggested at any temperature but it becomes a necessity above 500°F or when using ceramic seats. The ball stop prevents the ball and seat from sliding down the 7° wedge when expansion caused by the temperature increase widens the wedge. If the ball was permitted to slide down the wedge, the valve would be locked tight when cooling caused the wedge to contract.





### **Flow Coefficients**



The table below presents the Flow Coefficients (Cv) for Apollo<sup>®</sup> Top Entry Ball Valves. This number represents the flow (in gallons per minute of water) required to produce a 1 psig pressure drop across the valve. The data shown is for a valve in the full open position. Data for various degrees of open are available upon request. The values shown represent the average for several tests which highlighted the variability of Flow Coefficients. It is not unreasonable to expect a 10% to 20% deviation for a specific valve from the nominal figures shown.

Knowing specific system characteristics; such as line size, flow rate, temperature and pressure and knowing specific fluid characteristics; such as specific gravity, density, or compressibility factor allows the verification of the pressure drop across a known valve. Or conversely, in the absence of a valve size and knowing an acceptable pressure drop under the described flow conditions it is possible to select an appropriately sized valve.

#### APOLLO® TOP ENTRY FULL PORT VALVE FLOW COEFFICIENTS

| Valve Size | 150 Class Flanged | 300 Class Flanged | 600 Class Flanged |
|------------|-------------------|-------------------|-------------------|
| 1"         | 95                | 90                | 85                |
| 1-1/2"     | 230               | 225               | 200               |
| 2"         | 435               | 420               | 400               |
| 3"         | 1050              | 1000              | 950               |
| 4"         | 1950              | 1900              | 1800              |
| 6"         | 4800              | 4300              | 4300              |
| 8"         | 9100              | 8700              | 8000              |

#### APOLLO® TOP ENTRY VALVE FLOW COEFFICIENTS

| Valve Size | 150 Class<br>Flanged End | 300 Class<br>Flanged End | 300 Class<br>Buttweld End | 300 Class<br>Socket Weld | 300 Class NPT | 600 Class<br>Flanged End | 600 Class<br>Buttweld End | 600 Class<br>Socket Weld | 600 Class NPT |
|------------|--------------------------|--------------------------|---------------------------|--------------------------|---------------|--------------------------|---------------------------|--------------------------|---------------|
| 1/2"       |                          |                          |                           | 20                       | 20            |                          |                           | 20                       | 20            |
| 3/4"       | 50                       | 50                       | 50                        | 30                       | 30            | 50                       | 50                        | 30                       | 30            |
| 1"         | 60                       | 60                       | 60                        | 40                       | 40            | 60                       | 60                        | 40                       | 40            |
| 1-1/2"     | 100                      | 100                      | 100                       | 70                       | 70            | 100                      | 100                       | 70                       | 70            |
| 2"         | 180                      | 180                      | 180                       | 120                      | 120           | 190                      | 190                       | 120                      | 120           |
| 3"         | 330                      | 400                      | 400                       | 260                      | 260           | 410                      | 410                       | 260                      | 260           |
| 4"         | 600                      | 720                      | 720                       |                          |               |                          | 780                       | 780                      |               |
| 6"         | 1,500                    | 1,500                    | 1,500                     |                          |               |                          | 1,700                     | 1,700                    |               |
| 8"         | 2,500                    | 2,500                    |                           |                          |               |                          | 3,100                     |                          |               |
| 10"        | 3,800                    | 3,800                    |                           |                          |               |                          | 4,900                     |                          |               |



#### **Top Entry Valve Operating Torques**

There are several elements involved in developing an appropriate "in-service" valve operating torque. Selection of the basic valve torque constant, shown on this page establishes the nominal valve torque based on the valve size, specified valve seat and the approximate working pressure.

Armed with the nominal valve operating torque, adjustments are now made to account for individual service conditions. These factors are selected from the table at the lower right. They are additive, or combined in series and used to arrive at the "in-service" torque.

| EXAMPLE<br>Selected Valve:<br>3" 150 w/#3 seat<br>(Model: CS-B30-BS1                                       | )                                     |
|------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Torque Constant:<br>1250 in-Ibs                                                                            |                                       |
| Service Factors:<br>ON/OFF Service<br>Clean Dry Air<br><u>Weekly Operation</u><br>Net Service Factor       | 0.0<br>0.3<br><u>0.2</u><br>0.5       |
| "In Service" Valve Torque<br>1250 x (1 + 0.5) = 18<br>(This is the valve torque of<br>select an actuator.) | e:<br>75 in-lbs<br><sup>used to</sup> |

#### **TORQUE CONSTANTS FOR TOP ENTRY BALL VALVES**

| Seat s |      | Valve Size         | Valve Size         |        | Diff   | erential P | ressures ( | psig)  | (InLbs. | .)                |
|--------|------|--------------------|--------------------|--------|--------|------------|------------|--------|---------|-------------------|
|        |      | Reg. Port<br>(In.) | Full Port<br>(In.) | 100    | 285    | 500        | 740        | 1480   | LSST*   | Grafoil®<br>Adder |
| 1***   | 2    | 1/2 thru 1         | 1/2 thru 3/4       | 85     | 110    | 140        | 180        | 290    | 170     | 68                |
|        |      | 1-1/2              | 1                  | 205    | 260    | 330        | 415        | 660    | 410     | 96                |
| 3      | 5    | 2                  | 1-1/2              | 350    | 430    | 550        | 735        | 1,200  | 700     | 127               |
| 6**    | 7*** | 3                  | 2                  | 950    | 1,250  | 1,650      | 2,000      | 3,200  | 1,900   | 245               |
|        |      | 4                  | 3                  | 2,000  | 2,500  | 3,300      | 4,100      | 6,500  | 4,000   | 399               |
| А      | C    | 6††                | 4 <sup>††</sup>    | 5,300  | 6,700  | 8,200      | 11,400     | 18,000 | 10,600  | 661               |
| D      | U**  | 8††                | 6††                | 11,000 | 14,000 | 18,500     | 25,000     | 36,000 | 22,000  | 900               |
|        |      | 10 <sup>††</sup>   | 8 <sup>††</sup>    | 18,500 | 22,000 | 30,000     | 40,000     | 62,000 | 37,000  | 1,326             |
|        |      |                    |                    |        |        |            |            |        |         |                   |
|        |      | 1/2 thru 1         | 1/2 thru 3/4       | 115    | 160    | 210        | 260        | 450    | 230     | 68                |
|        |      | 1-1/2              | 1                  | 270    | 370    | 480        | 590        | 1,000  | 540     | 96                |
| 4      | 8    | 2                  | 1-1/2              | 475    | 650    | 860        | 1,050      | 1,750  | 950     | 127               |
| 9      | В    | 3                  | 2                  | 1,250  | 1,850  | 2,400      | 2,950      | 4,900  | 2,500   | 245               |
|        |      | 4 <sup>††</sup>    | 3 <sup>++</sup>    | 2,700  | 3,700  | 4,900      | 5,900      | 10,000 | 5,400   | 399               |
|        |      | 6 <sup>††</sup>    | 4 <sup>††</sup>    | 7,410  | 10,100 | 13,400     | 16,400     | 25,300 | 14,800  | 661               |
|        |      | 8 <sup>††</sup>    | 6 <sup>††</sup>    | 15,000 | 20,000 | 26,000     | 34,500     | 56,000 | 30,000  | 900               |
|        |      | 10 <sup>††</sup>   | 8 <sup>††</sup>    | 25,000 | 32,000 | 45,000     | 60,000     | 96,000 | 50,000  | 1,326             |

\*LSST - Long Stand Still Torque

\*\*Rated torque for #6 and U seat add 30%

\*\*\*Rated torque for #1 and #7 PTFE seats can be reduced by 30%

<sup>+</sup>Rated torque for #9 ceramic seat is to be increased by 10%

<sup>*tt*</sup>Gear operator or actuation recommended

#### **BALL VALVE TORQUE ADJUSTMENT FACTORS**

| PROVISION                | CONDITION                            | FACTOR                 |
|--------------------------|--------------------------------------|------------------------|
| Tune of Operation        | On/Off Service                       | 0                      |
| Type of Operation        | Modulating Service                   | 0.25                   |
|                          | Liquid, Clean Particle Free          | 0                      |
|                          | Liquid, Dirty, Slurry, Raw Water     | 0.3 to 0.8             |
|                          | Liquid, Black Liquor, Lime Slurry    | 0.8                    |
|                          | Liquid, Oil, Lubricating             | 0                      |
| Drococc Modia            | Liquid, Viscous, Molasses            | 0.3                    |
| Process Media            | Gas, Clean & Wet                     | 0                      |
|                          | Gas, Dry                             | 0.3 to 0.5             |
|                          | Gas, Dirty, Air Slurry, Natural Gas  | 0.5 to 1               |
|                          | Oxygen, Chlorine                     | 0.5                    |
|                          | Superheated Steam, Saturated Steam   | Refer to Process Temp. |
|                          | Once Per Day or More                 | 0                      |
| Fraguency of Operation** | Once Per Week                        | 0.2                    |
| Frequency of Operation"" | Once Per Month                       | 0.5                    |
|                          | Less Than Once Per Month (LSST)      | 1                      |
| Due coss Tomon eventure  | Applications Above 225 Deg F (107°C) | 0.50                   |
| Process temperature      | Applications Below -20 Deg F (-29°C) | 0.25                   |
|                          | PTFE                                 | -0.3                   |
| Value Castin a Material  | *Multifill                           | 0                      |
| valve Seating Material   | *Peek                                | Consult Factory        |
|                          | *UHMWPE                              | Consult Factory        |
| Option                   |                                      |                        |
| -49                      | Assembled Dry                        | 0.3                    |
| -57                      | Oxygen Cleaned                       | 0.3                    |
| -67                      | Cleaned for Industrial Gas           | 0.3                    |
| -90                      | Double Packed Extended Bonnet        | 0.2                    |
| Customer Specified       | Prescribed Safety Factor             | 0.2 to 2               |

\* Do not consider when calculating Top Entry Valve Torques. Apply all applicable Torque Adjustment

Factors to the Valve Torque Constant to determine the in-service torque requirement. \*\* If accounting for LSST disregard frequency of operation.



How to Specify Apollo Top Entry Ball Valves

| BODY MATERIAL         TRIM MATERIAL         CLASS, PORT, ENDS         SEAT           C - Carbon Steel         S - 3165S         CLASS, PORT, ENDS         SEAT           S - 3165S         Standard Port         B - Ranged         A - API-607 Certified, RPTE Seat (Figure 3)           A - Alloy 20           B - G3M S5*         B - 316LSO         Cfanged         1 - TTE (Figure 1)         3 - RTEE Seat (Figure 2)           H - Hastelloy C         M - M35-1 Ball         C - Fianged         1 - TTE (Figure 1)         3 - RTE Seat (Figure 2)           M - M35-1         H - Hastelloy C         M - M35-1 Nonell         D - NPT         5 - S508 Bonze, 5% MOK, (Figure 2)           M - M35-1         M - M35-1 Nonell         M - M35-1 Nonell         S - Stock Weld         7 - APH-607 Certified, PTE Seat (Figure 2)           T - Titanium         T - Titanium         N - Nickel         N - Nickel         7 - APH-607 Certified, PTE Seat (Figure 2)           T - Titanium         N - Nickel         N - Nickel         N - Socket Weld         7 - APH-607 Certified, PTE Seat (Figure 2)           T - Titanium         N - Nickel         N - Nickel         N - Socket Weld         N - Macronized 316 SS Ball & Seats (Figure 4)           Tococker Weld         F - Fianged | C                                                                                                                                                            | S                                                                                                                                                      | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C - Carbon Steel       S - 316 SS       CLASS 150       A - Alloy 20         S - 316 SS       Standard Port       B - Ranged       Planged         A - Alloy 20       A - Alloy 20       F - Inanged       Planged         M - M35 - 1       H - Hastelloy C       M - M35 - 1 Mail       C - Ranged       S - Stiff E (Figure 1)         T - Titanium       N - Nickel       D - HASTelloy C (Mone)       G - NPT x Socket Weld       S - Stiff E (Satt (Figure 2)         T - Titanium       N - Nickel       D - NPT x Socket Weld       S - Stiff E (Gaure 1)       S - Stiff E (Gaure 2)         T - Titanium       T - Titanium       N - Nickel       S - Stiff E (Gaure 2)       D - Stiff E (Gaure 2)         T - Titanium       T - Titanium       N - Socket Weld       S - Stiff E (Gaure 2)       D - Stiff E (Gaure 2)         T - Titanium       N - Socket Weld       S - Stiff E (Gaure 1)       S - Stiff E (Gaure 2)       D - Stiff E (Gaure 1)         T - Titanium       N - Socket Weld       N - Socket Weld       S - Stiff E (Gaure 1)       S - Stiff E (Gaure 1)         T - Titanium       N - Socket Weld       N - Socket Weld       N - Socket Weld       N - Malconized 316 SS Ball & Seats (Figure 4)         M - Malconized 316 SS Ball & Seats (Figure 4)       S - Stiff E (Gaure 1)       S - Socket Weld       N - Nactoria sectanis and secta               | BODY MATERIAL                                                                                                                                                | TRIM MATERIAL                                                                                                                                          | CLASS, PORT, ENDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SEAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C - Carbon Steel<br>S - 316 SS<br>A - Alloy 20<br>B - CF3M SS*<br>F - Inconel<br>H - Hastelloy C<br>M - M35-1<br>N - Nickel<br>T - Titanium<br>*Flanged Only | S - 316 SS<br>A - Alloy 20<br>B - 316L SS<br>D - Hastelloy C Stem,<br>M35-1 Ball<br>H - Hastelloy C<br>M - M35-1 (Monel)<br>N - Nickel<br>T - Titanium | CLASS 150<br>Standard Port<br>B - Flanged<br>Full Port<br>E - Flanged<br>CLASS 300<br>Standard Port<br>C - Flanged<br>D - NPT<br>G - NPT x Socket Weld<br>N - Socket Weld<br>P - Buttweld<br>R - FLG x Buttweld<br>S - RTJ Flanges<br>Full Port<br>3 - Buttweld<br>F - Flanged<br>L - NPT<br>M - Socket Weld<br>Y - NPT x Socket Weld<br>CLASS 600<br>Standard Port<br>H - NPT<br>J - Socket Weld<br>K - Flanged<br>Q - NPT x Socket Weld<br>W - Buttweld<br>Full Port<br>4 - NPT<br>G - NPT x Socket Weld<br>T - Socket Weld<br>U - Flanged<br>CLASS 900<br>Standard Port<br>9 - Flanged | A - API-607 Certified, RPTFE Seat (Figure 3)<br>2 - RTFE (Figure 1)<br>3 - RTFE Seat (Figure 2)<br>4 - Carbon Graphite, 750°F max. (Figure 1)<br>5 - 55% Bronze, 5% Moly, (Figure 2)<br>6 - UHMWPE (Figure 2)<br>7 - API-607 Certified, PTFE Seat (Figure 3)<br>8 - PEEK (Figure 2)<br>9 - Ceramic (Figure 4)<br>8 - 30% Carbon Reinforced PEEK (Figure 2)<br>D - SRTFE, 60% SS, 40% TFE by weight<br>(50% SS Min) (Figure 2)<br>F - CRTFE (Figure 1)<br>G - PCTFE (Figure 1)<br>H - High Temp Graphite, 1000°F max. (Figure 1)<br>K - Stellite Ball & Seats (Figure 4)<br>M - Malcomized 316 SS Ball & Seats (Figure 4)<br>U - UHMWPE (Figure 1)<br>Figure Numbers in parentheses indicate the Seat Design.<br>See "Seat Data" section for details.<br>Seat code also dictates default seal material and default<br>suffix. See "Materials" section for details.<br>Pressure-Temperature ratings are found in the<br>"Pressure-Temperature Ratings" section. |



| 4          | BS                                                                                    |                          |
|------------|---------------------------------------------------------------------------------------|--------------------------|
| SIZE (IN)  | OPTIONS                                                                               |                          |
| 3 - 1/2"   | AR – Actuator Ready                                                                   | MODEL REVISION           |
| 4 - 3/4"   | BO - Flexible Graphile Seals & Packings                                               |                          |
| 5 - 1"     | BN - TFE Spiralwound Bonnet Gasket                                                    |                          |
| 7 - 1-1/2″ | BS - Flexible Graphile Spiral Wound Bonnet Gasket & Flexible Graphile Packings        |                          |
| 8 - 2"     | CH - Clamp-On Steam Jacket - Stainless Steel                                          |                          |
| 0 - 3"     | CJ - Clamp-On Steam Jacket - Carbon Steel                                             |                          |
| A - 4"     | CL - Cam-Lock Handle                                                                  |                          |
| C- 6″      | EB - Extended Bonnet                                                                  |                          |
| E- 8″      | EO - Round Handle                                                                     |                          |
| G - 10″    | FC - Live Loaded Fugitive Emission w/Double RPTFE Chevron Packings                    |                          |
| H- 12″     | FG - Fugitive Emission Bonnet with EVSP® 9000 Graphite Stem Packing                   |                          |
|            | FL - Fugitive Emission Bonnet with Double RPTFE Stem Packing                          |                          |
|            | FO - Full Jacketed w/Oversize Flanges                                                 |                          |
|            | FP - Live Loaded Fugitive Emission w/Double EVSP Packings                             |                          |
|            | GO - 21/4" Stem Extension                                                             |                          |
|            | HH - Vented Body                                                                      |                          |
|            | HO - Vented Body & Cleaned for Chlorine Service                                       |                          |
|            | HP - Vented Body & Cleaned for Hydrogen Peroxide Service                              |                          |
|            | MG - Gear Operator                                                                    |                          |
|            | MT - 2 Position Lock Plate for Standard Bonnet                                        |                          |
|            | MU - 2 Position Lock Plate for Extended Bonnet                                        |                          |
|            | NC - NACE Certified Trim                                                              |                          |
|            | OL - Oval Locking Handle                                                              |                          |
|            | 00 - RPTFE Seals & Packings                                                           |                          |
|            | OM - RPTFE Bonnet Gasket & UHMWPE Packings                                            |                          |
|            | PJ - Partial Steam Jacket                                                             |                          |
|            | PO - Cleaned for Oxygen Service                                                       |                          |
|            | PP - Cleaned for Industrial Gases                                                     |                          |
|            | RS - Welded Ball Stop with Safety Cap                                                 |                          |
|            | TP - Two Position Sliding Latch Lock Lever                                            |                          |
|            | ZO - PTFE Seals & Packings                                                            |                          |
|            |                                                                                       | EXAMPLE:                 |
|            | NOTE: Optional Features may be used alone or in combination (simply added             | CSJA4BS1                 |
|            | in alphabetical order), however not all combinations are available on all             |                          |
|            | valves. This is a very limited list of the available options. Contact the factory for | Carbon Steel Body        |
|            | specific requirements and availability.                                               | 316 SS Irim<br>Class 600 |
|            |                                                                                       | Standard Port            |
|            | * MG is Generic for Gear Operators. Contact Factory or Price Book for                 | Socket Weld Ends         |
|            | Specific Application and Part No.                                                     | API-607, RPTFE Seat      |
|            | EVSP is a registered trademark of Garlock.                                            | 3/4"                     |
|            |                                                                                       | Spiral Wound Flexible    |

For additional information, submittal sheets and manuals, visit www.apollovalves.com

Graphite Gasket Flexible Graphite Packing Model Revision = 1

### **NOTES**

<mark>(30</mark>)

|    | www. <b>apollovalves</b> .com |               |
|----|-------------------------------|---------------|
| 0) |                               | Apollo Valves |

Customer Service (704) 841-6000

### WARRANTY AND LIMITATIONS OF LIABILITY

Conbraco Industries, Inc. warrants, to its initial purchaser only, that its products which are delivered to this initial purchaser will be of the kind described in the order or price list and will be free of defects in workmanship or material for a period of FIVE years from the date of delivery to you, our initial purchaser. This warranty applies to Apollo brand product with "Made in the USA" markings only.

Should any failure to conform to this warranty appear within FIVE years after the date of the initial delivery to our initial purchaser, Conbraco will, upon written notification thereof and substantiation that the goods have been stored, installed, maintained and operated in accordance with Conbraco's recommendations and standard industry practice, correct such defects by suitable repair or replacement at Conbraco's own expense.

APOLLO INTERNATIONAL PRODUCTS: Conbraco Industries, Inc. warrants its International products, to its initial purchaser only, that its international products which are delivered to this initial purchaser will be of the kind described in the order or price list and will be free of defects in workmanship or material for a period of TWO years from the date of delivery to you, our initial purchaser.

THIS WARRANTY IS EXCLUSIVE AND IS IN LIEU OF ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHER WARRANTY OF QUALITY, WHETHER EXPRESSED OR IMPLIED, EXCEPT THE WARRANTY OF TITLE AND AGAINST PATENT INFRINGEMENT. Correction of non-conformities, in the manner and for the period of time provided above, shall constitute fulfillment of all liabilities of Conbraco to our initial purchaser, with respect to the goods, whether based on contract, negligence, strict tort or otherwise. It is the intention of Conbraco Industries, Inc. that no warranty of any kind, whether expressed or implied shall pass through our initial purchaser to any other person or corporation.

LIMITATION OF LIABILITY: Conbraco Industries, inc. SHALL NOT UNDER ANY CIRCUMSTANCES BE LIABLE FOR SPECIAL OR CONSEQUENTIAL DAMAGES SUCH AS, BUT NOT LIMITED TO, DAMAGES OR TO LOSS OF OTHER PROPERTY OR EQUIPMENT, LOSS OF PROFITS OR REVENUE, COST OF CAPITAL, COST OF PURCHASED OR REPLACEMENT GOODS, OR CLAIMS OF CUSTOMERS OF OUR INITIAL PURCHASER. THE REMEDIES OF OUR INITIAL PURCHASER, AND ALL OTHERS, SET FORTH HEREIN, ARE EXCLUSIVE, AND THE LIABILITY OF CONBRACO WITH RESPECT TO SAME SHALL NOT, EXCEPT AS EXPRESSLY PROVIDED HEREIN, EXCEED THE PRICE OF THE GOODS UPON WHICH SUCH LIABILITY IS BASED.

\* It is the end user's responsibility to confirm that items intended for use satisfy local codes and standards.



### **INTERNATIONAL SALES REPS & REGIONAL MANAGERS**

|        |                                                                         | AREAS COVERED                  | EMAIL                              | PHONE             | FAX                   |  |  |
|--------|-------------------------------------------------------------------------|--------------------------------|------------------------------------|-------------------|-----------------------|--|--|
|        | Conbraco International Sales:                                           |                                |                                    |                   |                       |  |  |
| TIONAL | Jose Arias                                                              | Mexico                         | jose.arias@conbraco.com            | 956-631-4542      | 956-631-4681          |  |  |
|        | Luis Guzman                                                             | Caribbean                      | luis.guzman@conbraco.com           | 787-739-5620      |                       |  |  |
|        | JR Jefferson                                                            | Central & South America        | jr.jefferson@conbraco.com          | 832-220-3783      |                       |  |  |
|        | Mike Link                                                               | United Kingdom                 | michael.link@pegleryorkshire.co.uk | 44-0-1302-560-560 | 44-0-1302-367-661     |  |  |
| RNA    | Luke Liu                                                                | China                          | luke.liu@conbraco.com              | 411-869-02498     | 411-869-02498         |  |  |
| INTE   | Jonathan Yap                                                            | Asia Pacific/India             | jonathan.yap@conbraco.com          | 65-9626-9241      | 65-6753-0131          |  |  |
|        |                                                                         | Europe/Africa/Australia/Israel | Contact Customer Service           | 704-841-6000      | 704-841-6021          |  |  |
|        | Pegler Yorkshire Mid East                                               | Middle East (except Israel)    | pydubai@mailme.ae                  | 971-4-454-2353    | 971-4-454-2352        |  |  |
|        | APOLLO VALVES REGIONAL SALES DIRECTORS P.O. BOX 247. Matthews. NC 28106 |                                |                                    |                   |                       |  |  |
|        | Brian Blalock                                                           | East                           | brian.blalock@conbraco.com         | 704-614-3744      | 704-841-6021          |  |  |
|        | Skip Wilson                                                             | West                           | skip.wilson@conbraco.com           | 760-330-3293      | 775-854-5722          |  |  |
|        | APOLLO VALVES REGIONAL MANAGERS                                         |                                |                                    |                   |                       |  |  |
|        | Kevin Ashworth                                                          | Mid Atlantic                   | kevin.ashworth@conbraco.com        | 757-272-6200      |                       |  |  |
|        | Steve Brown                                                             | Northwest                      | steve.brown@conbraco.com           | 425-985-5095      | 253-862-3548          |  |  |
|        | Andy Fretz                                                              | Canada - Commercial            | andy.fretz@conbraco.com            | 647-281-3161      | 905-761-6666          |  |  |
| IERS   | Ben Lauletta                                                            | Northeast                      | ben.lauletta@conbraco.com          | 518-795-4629      |                       |  |  |
| NAG    | Sanford Pauly                                                           | North Central                  | sanford.pauly@conbraco.com         | 513-716-7772      | 513-321-7717          |  |  |
| T WV   | Hector Rivera                                                           | Florida                        | hector.rivera@conbraco.com         | 786-210-7010      |                       |  |  |
| DNA    | James Saldivar                                                          | South Central - Industrial     | james.saldivar@conbraco.com        | 832-776-5547      |                       |  |  |
| EGIO   | Nick Shelley                                                            | South Central - Commercial     | nick.shelley@conbraco.com          | 214-790-4157      |                       |  |  |
|        | Jim Todman                                                              | Canada - Industrial            | jim.todman@conbraco.com            | 905-407-8385      | 905-761-6666          |  |  |
|        | LASCO FITTINGS IRRIGATION RE                                            | GIONAL MANAGERS                |                                    | P.O. BOX 116,     | Brownsville, TN 38012 |  |  |
|        | David Beyer                                                             | Northeast                      | dbeyer@lascofittings.com           | 561-718-9379      |                       |  |  |
|        | Ron Modugno                                                             | West                           | rmodugno@lascofittings.com         | 661-910-5058      | 661-775-0713          |  |  |
|        | Jimmy White                                                             | Central                        | jwhite@lascofittings.com           | 731-234-2372      | 731-779-3608          |  |  |
|        | Ben Freeman                                                             | Southeast                      | bfreeman@lascofittings.com         | 205-919-4944      |                       |  |  |
|        | Rick Williamson                                                         | Eastern Specifications Manager | rwilliamson@lascofittings.com      | 386-451-2307      |                       |  |  |

Apollo Valves



### SALES & CUSTOMER SERVICE:

### Phone: (704) 841-6000 Fax: (704) 841-6020

www.apollovalves.com

|             |                                    |                                                         | <b>5</b>                        |                     |              |
|-------------|------------------------------------|---------------------------------------------------------|---------------------------------|---------------------|--------------|
|             | AGENCY                             | AREAS COVERED                                           | EMAIL                           | PHONE               | FAX          |
| _           | Mid South Marketing, Inc.          | VA/MD/Washington, D.C./WV-East                          | michael.uecker@msmsales1.com    | 804-213-3801        | 804-213-3802 |
| AST<br>N    | Pro Marketing Inc                  | NC/SC/TN-East                                           | sales@promarketinginc.net       | 864-578-4334        | 864-578-4889 |
| E E         | Spirit Group                       | FL (excent Panhandle)                                   | info@spiritgrouping.com         | /07_201_6035        | /07_200_0378 |
| <b>P</b>    | Tim Moralos & Associatos Inc       | Al /EL Danhandlo                                        | caloc@timmoraloc.com            | 751 602 0222        | 251 602 0220 |
| Š           |                                    | AL/FL Palifianule                                       | sales@tillillorales.com         | 201-002-0000        | 231-002-0339 |
|             | white wolf Group                   | GA                                                      | Info@wnitewoirgroupinc.com      | 800-401-4870        | 888-908-9372 |
| N N         | BWC Inc.                           | LA (Commercial Products)                                | chuck@bwcassoc.com              | 504-734-0229        | 504-734-3711 |
|             | Marathon Flow Control              | TX, OK, KS except Northeast, LA (Industrial)            | sales@marathonflowcontrol.com   | 214-201-0100        | 214-201-0104 |
| SOU<br>RE   | Southern Marketing Group           | MS/TN-West/AR/Bowie CtyTX                               | SMG49@bellsouth.net             | 901-547-0042        | 901-547-0035 |
|             | FourMation Sales                   | MN/ND/SD/WI-West                                        | rvan@fourmationsales.com        | 763-420-6900        | 763-420-6993 |
| _           | Marshall-Rodeno Heartland          | NE/IA (Except River Counties)                           | trodeno@marshallrodeno.com      | 303-575-6701        | 303-575-6706 |
| RN          | Midwest Spec                       | Northern OH Western PA WV                               | alsales@mwspec.com              | 330-538-0406        | 330-538-0410 |
| STE         | Midwest Spec                       | Southern OH, KV                                         | rysales@mwspec.com              | 513_353_0101        | 512-252-1580 |
| REG         | New Tech Marketing                 | Northorn II M/I East/N//MI UD/IA Diver Counties         | color@now_tochmorketing.com     | 620 270 4200        | 620 270 0212 |
| W           | New Tech Marketing                 | MO/Couthern II /Northeast Vansas                        | sales@new-techniarketing.com    | 610 204 0220        | 610 204 0427 |
| _           | New Tech Marketing                 | MU/Southern IL/Northeast Kansas                         |                                 | 018-394-0329        | 018-394-0427 |
|             | V.E. Sales Co., Inc.               | MI (Except Upper Peninsula)                             | tomv@vesalesinc.com             | 586-774-7760        | 586-774-1490 |
| -           | Elmco Duddy                        | CA - South                                              | tduddy@elmcoduddy.com           | 626-333-9942        | 626-855-4811 |
| _           | Gordon & Associates                | WA, OR, AK, Northern counties ID                        | kenn@gordonandassoc.com         | 907-441-7184        | 425-228-7777 |
| z_          | HC Fletcher                        | CA - North (AB 1953 compliant product)                  | apollosales@hcfletcher.com      | 800-432-7047        | 949-660-9072 |
| TER         | Marshall-Rodeno Associated         | CO/WY/MT/ID-SE/UT/NV-NE/NM/EI Paso-TX                   | trodeno@marshallrodeno.com      | 303-575-6701        | 303-575-6706 |
| VES'<br>Reg | Romatec                            | CA - North PVF (non AB 1953)                            | apollo@romatec.com              | 877-530-3530        | 661-588-3534 |
| >           | Southwest Valves                   | CA (Waterworks and Fire Protection)                     | d.burell@southwestvalve.com     | 559-261-2703        | 559-261-2711 |
| _           | Southwestern Industrial Sales Co.  | AZ/Nevada-SW                                            | eduardop@sw-ind.com             | 480-458-5838        | 480-458-5843 |
| _           | Spec Management Group              | н                                                       | msmarch4@cox.net                | 949-481-4225        | 949-487-0990 |
|             |                                    |                                                         |                                 |                     |              |
| ST          | Conroy & Griese Sales, Inc.        | NY-East/NJ-North                                        | iezzi52@aol.com                 | 856-663-4440        | 856-663-6644 |
| HEA         | Keith Engle & Associates           | OEM accounts                                            | keith.engle@verizon.net         | 610-827-9560        | 610-827-9561 |
| REG         | Layden Company                     | NY-Upstate/PA-East/DE/NJ-South                          | joejr@laydencompany.com         | 610-363-6657        | 877-529-3361 |
| Ž           | Urell, Inc.                        | MA/New England States                                   | conbraco@urell.com              | 617-923-9500        | 617-926-9414 |
|             | Active Sales Northwest, Inc.       | OR, WA, Western ID                                      | skactive@aol.com                | 541-726-0320        | 541-726-1148 |
| _           | Biz Sales Company                  | OH, KY, MI, IN, parts of PA, WV, WI                     | dzavelson@bizpvf.com            | 216-595-2888        | 216-595-2899 |
| _           | Fourmation Sales                   | MN/ND/SD/WI-West                                        | dean@fourmationsales.com        | 763-262-4700        | 763-262-4740 |
| _           | Hall Marketing                     |                                                         | hallmarketing@hellsouth_net     | 228-547-4637        | 778-832-6666 |
| _           | 18.1 Midwest Sales                 |                                                         | iohn@iandimidwestsales.com      | 311_177_8/10        | 220 052 0000 |
| PS          | lim Ponton & Associatos            | AL EL Danhandlo                                         | iim@hontonondossos.com          | 205 664 1221        | 205 664 1277 |
| RE          | Jill Deliton & Associates          |                                                         | ihart@laccofttingc.com          | 203-004-1221        | 203-004-1277 |
| NLY         | Julii Hall                         | FL<br>TV Southorn                                       |                                 | //2-393-///3        | //2-409-4303 |
| 0 N         | Larry Perkins                      | IX - Southern                                           | iperkins@lasconttings.com       | 930-443-1090        | (21 427 0550 |
| 110         | Marei Enterprises                  | New England, NY, DE, MD, VA, DC, parts of PA & WV       | mareienterprise@gmail.com       | 631-271-1718        | 631-427-8558 |
| IGA         | Marshall-Rodeno Associated         | CU/WY/MI/ID-SE/UI/NV-NE                                 | trodeno@marsnallrodeno.com      | 303-5/5-6/01        | 303-5/5-6/06 |
| IRR         | NSC Marketing Group Inc.           | UK                                                      | nsc_tulsa@sbcglobal.net         | 918-627-5340        | 918-664-1408 |
| _           | Pro Marketing, Inc.                | NC/SC/IN-East                                           | sales@promarketinginc.net       | 864-578-4334        | 864-578-4889 |
| _           | Sherman Dobbs                      | TX - Northern                                           | sdobbs@lascofittings.com        | 469-442-8510        | 972-417-9733 |
| _           | Southern Marketing Group           | MS/TN-West/AR/Bowie CtyTX                               | SMG49@bellsouth.net             | 901-547-0042        | 901-547-0035 |
| _           | Spec Management Group              | CA-South                                                | msmarch4@cox.net                | 949-481-4225        | 949-487-0990 |
|             | VPC Sales                          | AZ                                                      | chudson@vpcsales.com            | 661-257-3923        | 661-257-3928 |
|             | Barclay Sales Ltd.                 | British Columbia                                        | bbarclay@barclaysales.com       | 604-945-1010        | 604-945-3030 |
|             | Conbraco Industries, Canada        | 178 Pennsylvania Ave., Unit 1, Concord. Ontario L4K 4B1 | conbraco.canada@conbraco.com    | 905-761-6161        | 905-761-6666 |
|             | D & M Mechanical Sales             | Ontario/East                                            | don@dandmsales.ca               | 613-384-7084        | 613-384-3407 |
| •           | Dynamic Agencies, 1 td.            | Saskatchewan                                            | doug.dvnamicage@sasktel.net     | 306-343-1901        | 306-343-1901 |
|             | L Levandier Sales Inc              | Nova Scotia, New Brunswick, Prince Edward               |                                 |                     |              |
| A           | st Let under Sures, met            | Island & Newfoundland                                   | service@ilevandiersales         | 506-858-1615        | 506-858-1084 |
| NA          | Kern Industries 1td                | Alberta-North                                           | kernind@telusnlanet.net         | 780-451-2056        | 780-454-6687 |
| 5           | Kern Industries Calasry 1td        | Alberta-South                                           | marty vucytus@kernindustries.co | <u>403-730-7701</u> | 403_230_2170 |
|             | Key to the North Salas Agoncy Inc. | Ontario_North                                           | hmahas@kaytothonorth.co         | 705-50/-671/        | 705-255-0179 |
|             | Task Controls Inc                  | Ontario                                                 | infeterente@tackcontrols.com    | 105-524-07 14       | 103-300-0140 |
|             |                                    | Unitario                                                |                                 | 410-291-3004        | 410-704-0401 |
|             |                                    | Manitaha /NN/ Ontania                                   |                                 | 201 052 1000        | 201 771 (015 |
|             | Iom Beggs Agencies Ltd.            | Manitoba/NW Ontario                                     | tba@mts.net                     | 204-953-1900        | 204-774-6915 |