Pressure Reducing Valve

DESCRIPTION:

The APOLLOXPRESS™ Model PRE-PR (36E Series) Pressure Reducing Valve with Press connections is easily installed to protect residential and commercial water distribution systems by automatically reducing excessive supply pressures. The dezincification resistant bronze body, stainless steel adjusting screw and dielectric polymer cage provide maximum corrosion resistance. Designed for easy in-line servicing with simple cartridge removal.

FEATURES:

- Fast, Reliable, Economical Press Installation
- Ridgid® XL Press Tool Compatible
- Leak Before Press® Technology
- Sealed Cage for vault installations
- Built-in Thermal Expansion By-Pass
- Large Area Integral Stainless Steel Strainer
- Modular Seat Disc and Strainer Cartridge
- Control Pressure Ranges: 15-75 psi and 75-150 psi
- Factory tested and preset at 50 psi or 100 psi
- · High flow / high efficiency design
- Made in USA, ARRA Compliant

PERFORMANCE RATING:

- Maximum Press Fitting Pressure: 250 psi (17.2 bar)
- Maximum Temperature: 180°F (82°C)

APPROVALS:

- ASSE 1003-2009; "Water Pressure Reducing Valves"
- CSA B356 "Water pressure reducing valves for domestic water supply systems"

MATERIAL SPECIFICATIONS:

Part Name	Material
Body	UNS C84400 Bronze
Connector Housing	ASTM B16 Brass
Connector O-Ring	NSF grade EPDM
Screen	Stainless Steel
Spring Housing	Glass Filled Celcon®
Diaphragm	FDA grade EPDM Reinforced
Seat Disc	FDA grade EPDM
Adjusting Screw & Nut	Stainless Steel
Cage Seal	Nitrile
Stem	ASTM B16 Brass
Spring	Music Wire ASTM A228
Cartridge O-Rings	FDA grade EPDM

APOLLOXPRESS

DIMENSIONS (IN)

Model Number	Order Number	Size	Length	Height from CL	Wt (lbs)
PRE12PR	36E10301PR	1/2″	5.46"	4.75"	1.5
PRE34PR	36E10401PR	3/4"	5.79"	4.75"	1.7
PRE1PR	36E10501PR	1″	5.91"	4.75"	2.3

MODEL NUMBERING SYSTEM

PRE			PR
	Size	Pressure Range	

Example: PRE-12H-PR is model number for a ½" High Pressure set at 100 psi

SIZE

12 -1/2" 3/4" 1" 1 -

PRESSURE RANGE

BLANK - 15 - 75 PSIG - 75 -150 PSIG

FLOW CAPACITY

Pipe Size	Fall-Off	Pressu	Pressure Differential (PSI)		
	(PSI)	25	50	75	
	10	10	13	16	
1/2"	15	13	18	22	
1/2	20	17	23	29	
	30	22	29	36	
3/4"	10	16	21	26	
	15	20	27	32	
	20	24	32	40	
	30	29	38	48	
1″	10	25	33	41	
	15	30	42	52	
	20	34	45	56	
	30	35	47	59	

Pressure differential is the difference between the supply pressure and adjusted outlet pressure measured in the static (closed) condition. Fall-off is the decrease in downstream regulated pressure as the flow increases.

