
Daniel[™] 3812

Liquid Ultrasonic Flow Meter

A Reliable and Economical Solution for Liquid Products Measurement

Overview

The Daniel 3812 Liquid Ultrasonic Flow Meter sets new standards for accuracy and cost efficiency in your non-custody transfer applications. Using innovative electronics and digital signal processing, you can expect high-accuracy and repeatability of liquid measurements for petrochemical, oil, water and wastewater industries. Available in nominal line sizes 4" - 36", the Daniel 3812's superior design has no moving parts, therefore eliminating wear, drift and pressure loss, and is easy to install and operate.

The Daniel 3812 is an in-line ultrasonic meter that measures transit times of sound pulses traveling diagonally in two parallel planes across the pipe, downstream with the flow and upstream against the flow. Each path has two integrally mounted ultrasonic transducers. Each pair of transducers acts alternately as transmitter and receiver. The difference in transit times is proportional to the average flow velocity along the acoustic paths, and is converted into an output signal and display of volumetric flowrate.

Integrated Daniel MeterLink™ advanced diagnostics allow you to access expert flow analysis and have an intuitive view of meter health. Calibration cycles can be extended to minimize your operating and maintenance costs. The Daniel 3812 Ultrasonic Meter is part of Emerson's broad range of intelligent field devices that power the PlantWeb® digital plant architecture. The 3812 communicates predictive diagnostics and process variable information via the HART protocol - this allows plant personnel to quickly detect and respond to abnormal situations, avoiding process upsets and unscheduled downtime.

Figure 1: Daniel 3812 Liquid Flow Meter

Typical Applications

The Daniel 3812 Liquid Ultrasonic Meter is ideal for many noncustody transfer applications such as:

Oil and Gas Industry

- Allocation measurement
- Effluent flow measurement
- Loading and unloading

Pipelines

- Leak detection
- Crude and refined product flow measurement

Termina

- Loading and offloading
- Tank farms/ storage measurement

Industrial Processes

- Batch and blending processes
- Cooling water measurement
- Plant utilities and offtake measurement

Features and Benefits

- No incremental pressure drop increases energy savings
- No moving parts reduce maintenance costs
- Field replaceable transducers simplify maintenance
- Measurement stability
- Wide flow range
- Bi-directional flow capabilities
- Integrated advanced diagnostics
- Ease of installation and operation reduces start-up time and lowers capital costs
- Wireless HART® support

Standard Specifications¹⁰

Meter Specifications

Characteristics

- Dual-path (four transducer) chordal design
- Transit-time based measurement
- Spool piece with integral mount transducers
- Nominal Velocity is 12.2 to 0.6 m/s (40 to 2 ft/s) with over-range of up to 14.6 m/s (48 ft/s)

Meter Performance

- Linearity is ± 0.30% of measured value over a 12.2 to 1.2 m/s (40 to 4 ft/s) range
- Repeatability is ± 0.10% of measured value

Transducer Capsule

- Field replaceable
- Intrinsically safe

Calibration

 All meters are functionally flow tested and calibrated at a Daniel flow calibration laboratory

Electronics Performance

Power

- 10.4 to 36 VDC
- 8 watts typical
- 15 watts maximum

Meter Mechanical Ratings

Line sizes

■ 100 to 900mm (4" to 36")⁽²⁾

Operating Process Product Temperature

■ -50°C to +150°C (-58°F to +302°F)(3)

Operating Pressure Range

0 to 155 Bar (0 to 2,250 psig)

Flanges⁽³⁾

 Raised face and Ring Type Joint (RTJ) for ANSI Classes 150, 300, 600, 900 (PN 20, 50, 100, 150)⁽²⁾

NACE Compliant

Designed for NACE compliance⁽⁴⁾

Electronics Ratings

Operating Temperature

■ -40 to +60°C (-40 to +140°F)

Operating Relative Humidity

■ Up to 95% non-condensing

Storage Temperature

■ -50°C to +85°C (-58°F to +185°F)

⁽¹⁾ Please consult Daniel if your requirements are outside the specifications. Other product and material offerings may be available depending on the application.

⁽²⁾ Consult factory on sizes above DN 900 (36") and on pressure ratings greater than PN 150 (ANSI 900).

⁽³⁾ Dependant on material selection

⁽⁴⁾ It is the equipment user's responsibility to select the materials suitable for the intended services.

Materials of Construction

Material Specifications

Body and Flange

Cast

- ASTM A352 Gr LCC Carbon Steel⁽⁴⁾
 -46°C to 150°C (-50°F to 302°F)
- ASTM A351 Gr CF8M 316 Stainless Steel -46°C to 150°C (-50°F to 302°F)
- ASTM A995 Gr 4A Duplex Stainless Steel⁽¹⁾
 -50°C to 150°C (-58°F to 302°F)

Forgings

- ASTM A350 Gr LF2 Carbon Steel⁽⁴⁾
 -46°C to 150°C (-50°F to 302°F)
- ASTM A182 Gr F316 SST
 -46°C to 150°C (-50°F to 302°F)
- ASTM A182 Gr F51 Duplex SST -50°C to 150°C (-58°F to 302°F)
- ASTM A105 Carbon Steel
 -29°C to 150°C (-20°F to 302°F)

Enclosure Housing

- ASTM B26 Gr A356.0 T6 Aluminum
- ASTM A351 Gr CF8M Stainless Steel

Transducer Components

Transducer Housing O-ring

- NBR Nitrile Butadiene Rubber (standard)
- Other materials available

Transducer Housing

- ASTM A479 316L Stainless Steel with Proprietary Matching Layer Material
- INCONEL ASTM B446 (UNS N06625) Gr 1 (optional)

Shroud Material

ASTM A240 316 Stainless Steel

Cable Gland

■ Chloroprene/Nitrile Rubber

Paint Specifications

Body and Flange

Carbon Steel Body

 2 coat paint - inorganic zinc primer (2) and acrylic lacquer top-coat (standard)

Stainless Steel or Duplex Body

Unpainted

Enclosure Housing

Stainless Steel

Unpainted

Aluminum

Chromate conversion coated with a polyurethane enamel

Table 1A: Body and Flange Pressure Ratings - Metric Units ⁽³⁾								
Nominal Meter	PN	Maximum Pressure Rating - bar						
Size (DN)	FIN	Carbon Steel	316 Stainless Steel					
100 to 900	20	20.0	19.0					
100 to 900	50	51.7	49.6					
	100	103.4	99.3					
	150	155.1	148.9					

Table 1B: Body and Flange Pressure Ratings - English Units ⁽³⁾							
Nominal		Maximum P	ressure Rating - psi				
Meter Size (in)	ANSI	Carbon Steel	316 Stainless Steel				
4 to 36	150	290	275				
41036	300	750	720				
	600	1500	1440				
	900	2250	2160				

⁽¹⁾ A995 4A material is not available in Canada.

⁽²⁾ Zinc primer prevents corrosion.

⁽³⁾ Pressure rating information is for -29°C to 38°C (-20°F to 100°F). Other temperatures may reduce the maximum pressure rating of the materials.

⁽⁴⁾ Impact tested per specified ASTM standard.

Standard Flow Ranges

Table 2A: Daniel 3812 Flow Range Table Metric Units								
Nominal			Fl	uid Velocity	(m/s)	Flow Rate (m³/hr)		
Meter Size (DN)	Meter I.D. (mm)	Pipe Schedule	Min	Max	Over-Range	Min	Max	Over-Range
100	102.3	Sch 40	0.61	12.2	14.6	18	360	433
150	154.1	Sch 40	0.61	12.2	14.6	41	818	982
200	202.7	Sch 40	0.61	12.2	14.6	71	1,417	1,700
250	254.5	Sch 40	0.61	12.2	14.6	112	2,233	2,679
300	303.2	Sch 40	0.61	12.2	14.6	158	3,170	3,803
350	333.4	SCh 40	0.61	12.2	14.6	192	3,831	4,597
400	381.0	Sch 40	0.61	12.2	14.6	250	5,004	6,005
450	428.65	Sch 40	0.61	12.2	14.6	317	6,334	7,601
500	477.82	Sch 40	0.61	12.2	14.6	394	7,871	9,445
600	574.65	Sch 40	0.61	12.2	14.6	569	11,383	13,660
750	742.95	STD	0.61	12.2	14.6	951	19,028	22,833
900	895.35	STD	0.61	12.2	14.6	1,382	27,635	33,162

Table 2B: Daniel 3812 Flow Range Table English Units											
Nominal		Pipe	Fl	uid Velo	city (ft/s)		Flow Rate	(ВРН)	Flow Rate (GPM)		
Meter Size (in)	Meter I.D. (in)	Schedule	Min	Max	Over-Range	Min	Max	Over-Range	Min	Max	Over-Range
4	4.026	Sch 40	2	40	48	113	2,267	2,721	79	1,587	1,905
6	6.065	Sch 40	2	40	48	257	5,146	6,175	180	3,602	4,322
8	7.981	Sch 40	2	40	48	446	8,910	10,692	312	6,237	7,485
10	10.020	Sch 40	2	40	48	702	14,045	16,853	492	9,831	11,797
12	11.938	Sch 40	2	40	48	997	19,936	23,923	698	13,955	16,746
14	13.124	Sch 40	2	40	48	1,205	24,094	28,913	843	16,866	20,239
16	15.000	Sch 40	2	40	48	1,574	31,474	37,769	1,102	22,032	26,438
18	16.876	Sch 40	2	40	48	1,992	39,839	47,807	1,394	27,887	33,465
20	18.812	Sch 40	2	40	48	2,475	49,504	59,405	1,733	34,653	41,583
24	22.624	Sch 40	2	40	48	3,580	71,599	85,920	2,506	50,120	60,144
30	29.25	STD	2	40	48	5984	119,680	143,617	4189	83,776	100,531
36	35.25	STD	2	40	48	8691	173,816	208,580	6084	121,671	146,005

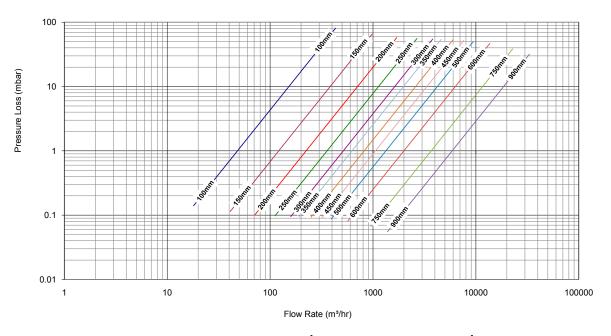


Figure 2A: Pressure Drop Chart - Metric Units - Meter Only

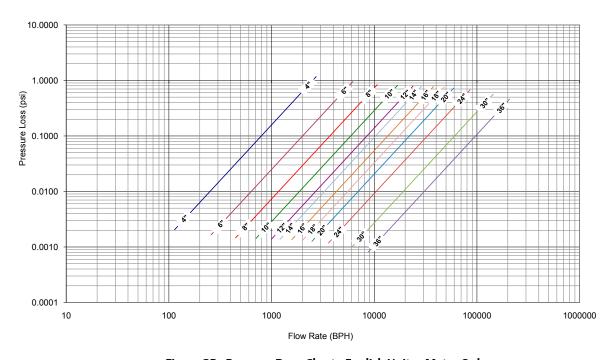


Figure 2B: Pressure Drop Chart - English Units - Meter Only

Input/Output

The Daniel 3810 Series Liquid Ultrasonic Flow Meter provides the I/O connections on the CPU Module.

Communications Specifications								
Communication Protocols	(1) Serial RS-232/RS-485 port (115 kbps baud rate) RS-232/RS-485 Full Duplex/RS-485 Half Duplex	■ Modbus RTU/ASCII						
	(1) Ethernet Port (TCP/IP) 100 BaseT	■ Modbus TCP						
Digital, Analog and Frequency	y Inputs							
Digital Input ⁽¹⁾	(1) Single polarity (Contact closure)	■ Status						
Analog Inputs(3)	(2) 4-20 mA	■ AI-1 Temperature ⁽²⁾						
		■ AI-2 Pressure ⁽²⁾						
Digital, Analog and Frequency	Digital, Analog and Frequency Outputs							
Frequency/Digital Outputs	(3) Frequency/Digital Outputs	 User configurable TTL/open collector 						
Analog Outputs(3)(4)	(2) 4-20 mA	 Independently configurable analog outputs 						
		 HART 7 compliant, consult factory for HART 5 						

 $⁽¹⁾ The analog-to-digital conversion accuracy is within \pm 0.05\% of full scale over the operating temperature range.$

⁽²⁾ Al-1 and Al-2 are electronically isolated and operate in sink mode. The input contains a series resistance so HART® Communicators can be connected to configure sensors.

 $⁽³⁾ A 24 \ Volt \ DC \ power \ supply \ is \ available \ to \ provide \ power \ to \ the \ sensors \ and \ / \ or \ power \ the \ analog \ output.$

 $⁽⁴⁾ The analog output zero scale offset error is within \pm 0.1\% of full scale and gain error is within \pm 0.2\% of full scale. The total output drift is within \pm 50 ppm of full scale per °C.$

Meter Software

Daniel MeterLink™ Overview

Daniel's new MeterLink software gives users access to information not seen before. This information is presented in an intuitive graphical format that takes complexity out of your flow measurement.

Delivered to the right person at the right time, this critical information will empower your staff to work predictively, instead of reactively.

- Windows®-based Daniel MeterLink® software is supplied with meter at no charge
- Daniel MeterLink is required for transmitter configuration
- Daniel MeterLink software requires RS-232, RS-485 full duplex, or Ethernet (recommended)
- Supports Windows 7 and Microsoft® Office® 2003-2010
- Configurable with AMS[™] Device Manager or 375 / 475 Field Communicator if HART[®] is used

	Daniel MeterLi	nk [™] Fe	atures
Powerful Analysis	 View, analyze and save waveforms Daily and hourly Logs Alarms and Audit history retrieval in Excel® or CSV files Daily and hourly log graphing Reverse flow alert display Alarms listed primary cause first Separate latched alarm display Trend maintenance logs Compare meter configurations stored in Excel logs Calibrate analog inputs 	Intuitive Interface	 Summarized and detailed views for meter performance information Built-in maintenance logs and inspection reports Meter directory support View multiple graphs simultaneously Automatic file naming and organized saving, supports hundreds of meters
Quick Startup	 Easy upgrade of meter firmware Modbus and HART protocol configuration Zero calibration wizard Field setup wizard Flow calibration wizard and Meter factor adjustment 	Versatile Connectivity	■ Ethernet ■ Serial port ■ Modem

Safety and Compliance

The Daniel 3812 Ultrasonic flow meters meet US, Canadian and European industry standards for electrical and intrinsic safety certifications and approvals.

Safety Classifications

- (UL / cUL) Underwriters Laboratories
 - Hazardous Locations Class I, Division 1, Group C,D
- CE Marked to Directives
 - (ATEX) Explosive Atmopheres
 - EII 2G Ex d ia IIB T4 (-40°C ≤ T ≤ +60°C)
 - (PED) Pressure Equipment Directive
 - (EMC) Electromagnetic Compatibility
- (IECEx) International Electrotechnical Commission
 - Ex d ia IIB T4

IMPORTANT: Please consult Daniel for a complete list of agencies and certifications.

Dimensions

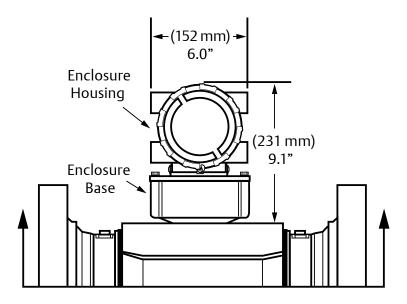


Figure 4A: Standard field installed position of enclosure housing $^{(1)(2)}$

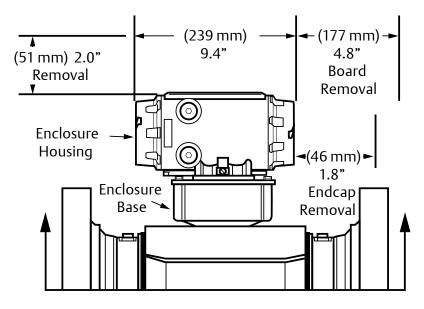


Figure 4B: Optional field installed position of enclosure housing⁽²⁾

⁽¹⁾ Enclosure housing may be rotated 360 degrees in 90 degree increments.

^{(2) 4&}quot; to 10" meter body shown.

Recommended Installation

Recommended Pipe Lengths

The drawings below represent recommended pipe lengths for the installation of the Daniel 3812 Liquid Ultrasonic Flow Meter. Please consult Daniel for installation recommendations of your specific application. Other lengths or flow conditioners can be accommodated.

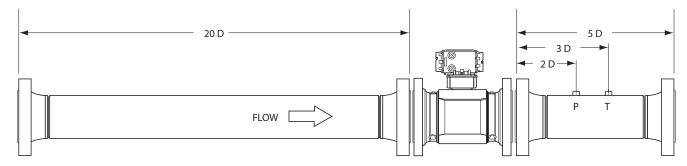


Figure 5A: Piping Recommendation for 20 Diameters Straight Pipe (No Flow Conditioners)

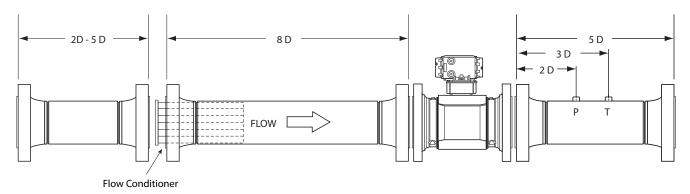


Figure 5B: Piping Recommendation for Liquid Ultrasonic Meter with a Flow Conditioner

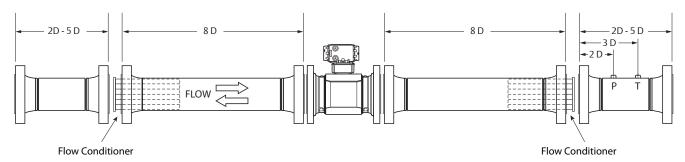
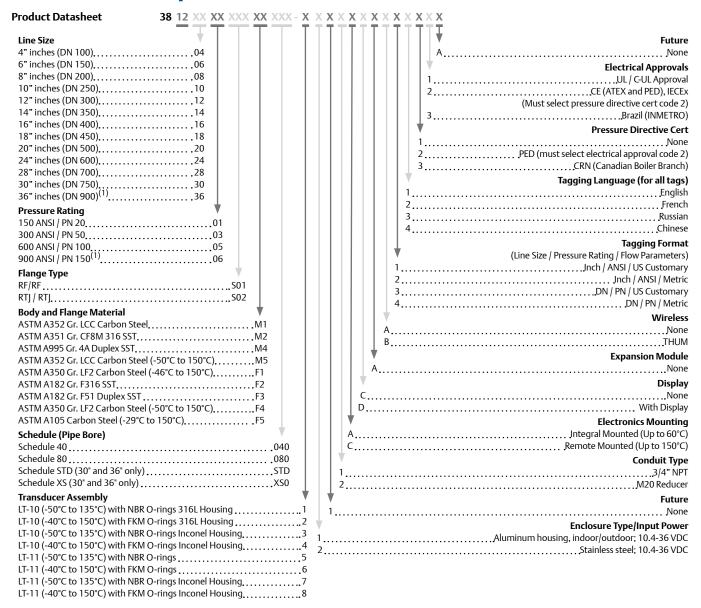



Figure 5C: Piping Recommendation for Bi-directional Liquid Ultrasonic Meter with Flow Conditioners

Notes:

- 1. For best results flow conditioning is recommended
- 2. D = Nominal pipe size in inches (i.e. 6" pipe size; 10 D = 60 in)
- 3. *P* = *Pressure measurement location*
- 4. T = Temperature measurement location
- 5. 4" to 10" meter body shown.

Daniel 3812 Liquid Ultrasonic Flow Meter Selector

This is for informational purposes only. Not every option is listed and some options are contingent on others. Please consult factory for assistance designing your optimal meter.

⁽²⁾ Consult factory on sizes above DN 900 (36") and on pressure ratings greater than PN 150 (ANSI 900).

Emerson Process Management

Daniel Measurement and Control, Inc. North America / Latin America: Headquarters USA - Houston, Texas T +1.713.467.6000 USA Toll Free 1.888.FLOW.001

www.Daniel.com

Europe: Stirling, Scotland, UK T+44.1786.433400 Middle East, Africa: Dubai, UAE T+971.4.811.8100 Asia Pacific: Singapore T+65.6777.8211 Scan with your smart phone for more information

©2012 Daniel Measurement and Control, Inc. All Rights Reserved. Unauthorized duplication in whole or in part is prohibited. Printed in the USA. DAN-LUSM-3812-DS-1012

Daniel Measurement and Control, Inc. ("Daniel") is an Emerson Process Management business unit. The Daniel name and logo are trademarks of Daniel Industries, Inc. The Emerson logo is a trademark and service mark of Emerson Electric Co. All other trademarks are the property of their respective companies.

