

TEMPERATURE CONTROL STEAM TRAP

MODEL LEX3N-TZ

FIXED TEMPERATURE DISCHARGE THERMOSTATIC TRAP TO CONTROL TEMPERATURE

Benefits

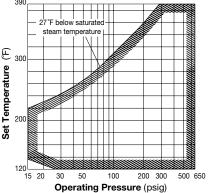
Steel-bodied bimetal thermostatic steam trap for accurate control of condensate discharge temperature. For use with steam tracing lines, storage tanks, instrument enclosures, steam trap air venting, and freeze protection of condensate lines.*

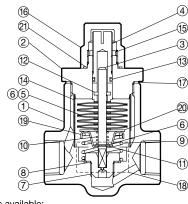
- 1. Maintains temperature control at preset levels between 120 and 390°F by setting the valve closing temperature.
- 2. Provides maximum energy utilization of the sensible heat in condensate that is wasted.
- Includes a built-in device for removing scale and buildup from the valve seat.
- Lowers cost of heating instrument enclosures and eliminates need for heat lamps.
- 5. Built-in, easy-to-clean screen protects internals to extend trouble-free service life.
- 6. Inline repairable to lower maintenance costs.
- 7. Can be used as an automatic non-freeze valve.
- 8. Overexpansion mechanism prevents damage to the bimetal element and ensures long service life.
- * See 'Applications' on page 2.

Specifications

Model	LEX3N-TZ		
Connection	Screwed	Socket Weld	Flanged
Size (in.)	3/8, 1/2 , 3/4 , 1	3/8, 1/2, 3/4, 1	½, ¾, 1
Condensate Temperature Setting Range (°F)*	120 - 390* (see table right)		
Maximum Operating Pressure (psig) PMO		650	
Minimum Operating Pressure (psig)		15	
Maximum Operating Temperature (°F) TMO		662	
Maximum Allowable Pressure (psig) PMA		900	
Maximum Allowable Temperature (°F) TMA		800	

Set temperature should be more than 27 °F below the steam saturation temperature.

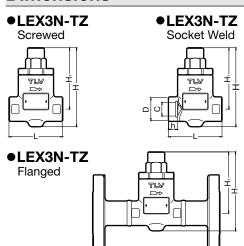

Connections and sizes in bold are standard


/ CAUTION

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

No.	Description	Material	ASTM/AISI*	JIS
1	Body	Cast Stainless Steel	A351 Gr. CF8	_
2	Cover	Stainless Steel	AISI303	SUS303
3 ^R	Valve Stem	Stainless Steel	AISI420	SUS420J2
(4)	Adjusting Screw	Stainless Steel	AISI303	SUS303
5)R	Bimetal Element	Bimetal	_	_
6)R	Washer	Stainless Steel	AISI304	SUS304
7 ^R	Valve Seat	Stainless Steel	AISI303	SUS303
8 ^{MR}	Valve Seat Gasket	Stainless Steel	AISI316L	SUS316L
9 ^R	Overexpansion Spring	Stainless Steel	AISI304	SUS304
$(10)^{R}$	Return Spring	Stainless Steel	AISI304	SUS304
11)R	Snap Ring	Stainless Steel	AISI304	SUS304
(12) R	Spring Pin	Stainless Steel	AISI304	SUS304
13 ^{MR}	Seal Ring	Fluorine Rubber	D2000HK	FPM
(14)R	Screen inside/outside	Stainless Steel	AISI430/304	SUS430/304
15	Lock Nut	Stainless Steel	AISI303	SUS303
(16)	Cap Nut	Cast Stainless Steel	A351 Gr. CF8	_
17 [™]	Cover Gasket	Stainless Steel	AISI316L	SUS316L
18	Nameplate	Stainless Steel	AISI304	SUS304
19 ^R	Spring Guide	Stainless Steel	AISI304	SUS304
20 ^R	Thrust Plate	Stainless Steel	AISI304	SUS304
21) MR	Cap Nut Gasket	Graphite	_	_
22	Flange (shown overleaf)	Cast Stainless Steel	A351 Gr. CF8	_

■ Temperature Setting Range



* Equivalent
Replacement kits available:
(M) maintenance parts, (R) repair parts

Consulting & Engineering Service

Dimensions

LEX3N-TZ	Screwed* /	Sock	et Weld**	

						(111)				
Size	L	Н	H ₁	φD	φC	h	Weight (lb)			
3/8	23/4	41/	21/	1 1/	0.690	15/	1.8			
1/2		4 1/16 3 1/8	4 1/16 3 1/8	4 1/16 3 1/8	4 7/16 3 7/8 1 7/4 0.8	31/8	1 1/4	I 1/4	0.855	15/32
3/4	0.1/	47/	2 17/	-1 13/	1.065	35/64	2.9			
1 31/8	47/16	3 17/32	1 ¹³ / ₁₆	1.330	64	2.6				

^{*} NPT, other standards available

LEX3N-TZ Flanged

(in)

(in)

	L				
Size	Connects to	o ASME Class H		H ₁	Weight* (lb)
	150RF	300RF			
1/2	53/4	53/4	4 1/16	31/8	5.1
3/4	617/32	617/32	47/16	317/32	7.3
1	65/16	7 5/16			8.8

Other standards available, but length and weight may vary * Weight is for class 300 RF

Sizing Charts

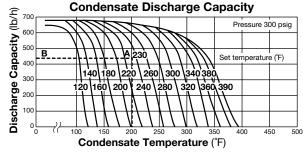
Estimation of Discharge Capacity.

Example: The flow rate of condensate discharging from 100 psig to atmosphere at 200°F from a trap set to 230°F is determined as follows:

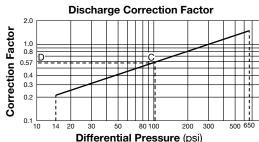
Step 1: Use the discharge capacity graph.

From the 200°F condensate temperature on the horizontal axis, follow a vertical line until it intersects the 230°F set temperature curve (point A).

From A, follow a horizontal line across to the vertical axis (point B), and read the discharge capacity, 440 lb/h.


Step 2: Use the correction graph.

Because the discharge capacity graph is based on a steam pressure of 300 psig, a correction factor must be used to adjust the discharge capacity value to the actual differential pressure at the trap.


Read up from 100 psi on the horizontal axis to the diagonal line (point C), then across to the correction factor (point D), 0.57.

Multiply the discharge capacity obtained in step 1 by the correction factor to get the actual discharge capacity:

 $440 \,^{\circ}\text{F} \times 0.57 = 250 \,\text{lb/h}.$

Recommended safety factor: at least 2.

Differential pressure is the difference between the inlet and outlet pressure of the trap.

Applications

DO NOT USE on any application <u>except</u> steam tracing lines, storage tank coils, instrument enclosures, steam trap venting, and freeze protection of condensate lines.

SUITABLE for steam tracing lines or storage tank coils **ONLY IF** the required product viscosity will be maintained when the condensate is subcooled at least 27 °F, even to the point of the condensate having a lower temperature than the product temperature.

SUITABLE for use on instrument enclosures **ONLY IF** the steam or condensate temperature in the enclosures will **NOT** damage the instrument. **SUITABLE** for use as an external air vent for TLV steam traps, or as a non-freeze valve for freeze protection of condensate lines.

DO NOT REMOVE CAP NUT OR COVER WHILE TRAP IS UNDER PRESSURE. Allow trap body temperature to cool to room temperature before removing cap nut or cover. Failure to do so may result in burns or other injury. READ INSTRUCTION MANUAL CAREFULLY.

TLY CORPORATION

13901 South Lakes Drive, Charlotte, NC 28273-6790

Phone: 704-597-9070 Fax: 704-583-1610

E-mail: tlv@tlvengineering.com

For Technical Service 1-800 "TLV TRAP"

Manufacturer

ISO 9001/ISO 14001

(M)

^{**} ASME B16.11-2005, other standards available