LOW PRESSURE CARBON DIOXIDE FIRE SUPPRESSION SYSTEM

Data/Specifications

FEATURES

- FM Approved
- Wide range of CO₂ storage units available (3/4 ton to 60 ton capacity)
- Hydraulic program for piping design and nozzle sizing
- CO₂ storage units are saddle mount
- Low profile design

APPLICATIONS

- The following are typical hazards protected by carbon dioxide systems:
- Printing presses
- Transformer vaults/electrical cabinets
- Open pits
- Dip tanks
- Rolling mills
- Ovens
- Coating machines
- Process equipment
- Exhaust and fume handling systems
- Flammable gas or liquid storage areas
- Generators
- Inerting applications

DESCRIPTION

The ANSUL® PREFERRED Commercial Low Pressure CO_2 Fire Suppression System is designed to meet the requirements of NFPA 12, Standard on Carbon Dioxide Extinguishing Systems. The system consists of a low pressure storage unit, master valves, selector valves, manual and automatic controls, distribution nozzles, alarms, indicators, and supervisory devices as required to maintain a supply of carbon

 dioxide in a stand-by discharge ready state, and to provide effective distribution of agent on demand.

The low pressure system consists of liquid CO_2 stored in an ASME coded pressure vessel which is equipped with a refrigeration system.

- The pressure within the vessel is kept near 300 psi (20.7 bar) by maintaining the internal temperature at approximately 0 °F (-17 °C). A manually operated tank shut-off valve, which is used to isolate the supply from the distribution network, is fitted to the storage unit at the time of installation. Low pressure storage units are available in sizes from 3/4 ton up to 60 ton capacity. Distribution of CO₂ is accomplished through a selector
- valve, master/selector valve or a hand-hose line arrangement. A selector valve arrangement is commonly used when multiple hazards are protected from a common supply manifold that is located in close proximity to the storage unit. The master/selector valve arrangement is typically used to protect several hazards from the same supply manifold where the selector valve is located close to the hazard and at a significant distance from the storage unit. Hand-hose lines can either be supplied from a separate low pressure storage unit or connected to the same storage unit that supplies a fixed pipe system. In all cases, the hand hose line has its own operating discharge valve.

The extinguishing agent is distributed to the protected space through a piping network and discharge nozzles that are sized in accordance with computerized flow and distribution calculations. The type of nozzles used depends upon the specific flow and distribution requirements of each application.

002455

Valve control is accomplished through electro-pneumatic or manual means. Each master and selector valve assembly consists of a ball or

- butterfly valve, a spring return pneumatic valve operator and an electrically operated solenoid valve. A listed and approved releasing control panel is used to provide automatic detection and control. CO₂ vapor
- from the storage container is regulated to approximately 100 psi (6.9 bar) and piped to the inlet of the electrical operated solenoid valve.
 Upon receipt of an electrical actuation signal from the releasing panel.
- the solenoid valve operates, allowing the CO₂ extinguishing agent to flow into the protected area. When the discharge timing cycle is complete, the electrical actuation signal is removed. Deactivation of the
- actuation signal returns the solenoid valve to its standby discharge ready position.

COMPONENT DESCRIPTION

►

CO₂ Low Pressure Storage Unit: The low pressure storage unit consists of a pressure vessel built to the ASME code for unfired pressure vessels. The storage unit is available in sizes from 3/4 ton to 60 ton. The pressure vessel has piping for filing, for supplying CO₂ vapor to the system controls, and a large outlet for discharging CO₂ into the protected hazard. The pressure vessel is covered with four inches of insulation. The insulation is covered with an aluminum vapor barrier. The pressure vessel is provided in a saddle mount configuration.

- The pressure vessel is equipped with a safety relief valve(s) in accordance with ASME requirements. In addition to the safety relief valve
- required by ASME, the pressure vessel is also supplied with an auxiliary safety relief device known as a 'bleeder' valve.

In the upper part of the pressure vessel, refrigerant evaporator coils serve to cool the stored CO_2 . A refrigeration unit supplies low pressure refrigerant to the evaporator coils inside the pressure vessel. The refrigeration extracts heat from the CO_2 vapor which surrounds the coils. The

refrigeration compressor cycle is controlled by a pressure switch which monitors the pressure of the CO₂ within the vessel. Pressure of the CO₂ inside the tank is lowered to 295 psi (20.3 bar). The refrigeration compressor turns on when the CO₂ pressure reaches 305 psi (21.0 bar). When the vapor space temperature is cooled to about 0 °F (-17 °C), the CO₂ pressure switch opens to start the refrigerant pump down cycle and turn off the compressor.

COMPONENT DESCRIPTION (Continued)

CO₂ Agent: Carbon dioxide is an effective fire extinguishing agent that can be used on many types of fires. It is effective for surface fires, such as flammable liquids and most solid combustible materials. It expands at a ratio of 450 to 1 by volume. For fire suppression purposes, the discharge is designed to raise the carbon dioxide concentration in the hazard. This displaces the air containing oxygen which supports combustion, and results in fire extinguishment. Other attributes are its high degree of effectiveness, its excellent thermal stability, and its freedom from deterioration. It is electrically non-conductive, and leaves no residue to clean up after discharge.

 Because the carbon dioxide is reclaimed from the atmosphere and is not created for the system, this fire suppression system has a zero net affect
 on the environment.

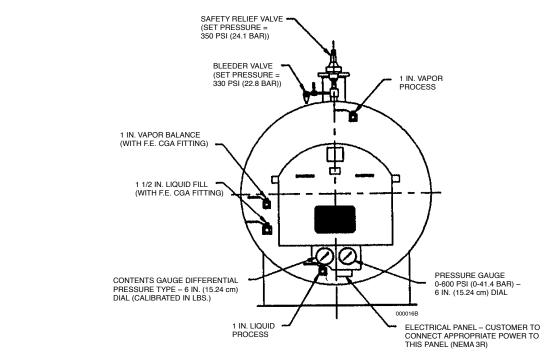
Nozzles: Nozzles are designed to direct the discharge of CO_2 in the hazard area. The system design specifies the orifice size to be used for proper flow rate and distribution pattern. The nozzle selection depends on the hazard and location to be protected. Standard nozzles are painted red or are natural brass, depending on the type. All are corrosion recitant

- ▶ sion resistant.
- Distribution Valves: Valves which control the discharge of CO₂ into the protected space(s) can be arranged in one of two configurations: master/selector or selector. Operation of the valve(s) is done either pneumatically, electro-pneumatically, or manually.

MASTER/SELECTOR: There are two discharge valves in the flow path between the low pressure storage unit outlet and the discharge nozzles. Starting from the storage unit, the first valve is the "master" valve. The valve downstream of the master valve is the "selector" valve. In most master/selector valve systems, one master valve will serve several selector valves. The advantage to this type of configuration is that it permits installing a single pipe from the storage unit to several distant

 hazards. The savings in installation cost by installing a single pipe rather
 than multiple individual pipes may more than offset the cost of the master valve and controls. SELECTOR: There is a single discharge valve in the flow path between the low pressure storage unit outlet and the discharge nozzles. This

- configuration is typically used to protect multiple hazards which are


 Close to the low pressure storage unit.
 Widely separated from
 other protected hazards. Cost of the equipment is less than that of a
 master/selector arrangement, but installation may be greater if several
- large diameter pipe runs must be installed from the low pressure storage unit to the hazards.
- Hose Reels: In addition to the fixed pipe systems, hose reels can be
- ► supplied by a low pressure storage unit. Hose reels consist of a corro-
- sion resistant painted reel. Several different lengths of 1 inch hose are available.

APPROVALS

ANSUL PREFERRED Low Pressure Carbon Dioxide Systems are designed to meet the requirements of NFPA 12 "Standard on Carbon Dioxide Extinguishing Systems." They are Factory Mutual (FM) Approved.

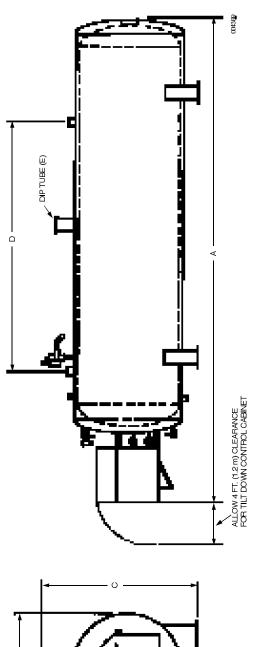
ORDERING INFORMATION

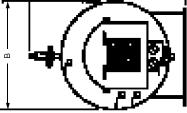
Order all system components through your local ANSUL Distributor
 authorized to support the ANSUL PREFERRED CO₂ product line.

FRONT PANEL OF STORAGE UNIT

SPECIFICATIONS

1.0 GENERAL


- 1.1 References
 - 1.1.1 Factory Mutual (FM)
 - 1.1.2 National Fire Protection Association (NFPA) 1.1.2.1 NFPA Standard 12
- 1.2 Submittals
 - 1.2.1 Submit two sets of manufacturer's component sheets
 - 1.2.2 Submit two sets of piping design drawings
- 1.3 System Description
 - 1.3.1 The system shall be an automatic fire suppression system using low pressure carbon dioxide extinguishing agent.
 - 1.3.2 The system shall be capable of suppressing fires in the following industrial related areas: Printing Presses, Transformer Vaults/Electrical Cabinets, Open Pits, Dip Tanks, Rolling Mills, Ovens, Coating Machines, Process Equipment, Exhaust and Fume Handling Systems, Flammable Gas or Liquid Storage Areas, Generators and Inerting Applications.
 - 1.3.3 The system shall be FM approved and of the engineered type with guidelines established by the manufacturer and having a computer aided flow program to determine pipe and nozzle requirements.
 - 1.3.4 The basic system shall consist of an agent storage unit, detection and control panel, discharge nozzles, and the necessary master and selector valves. Additional components shall be available for shutting down equipment and signaling system discharge.The system shall be fixed nozzle or hose reel type or a combination of both. The system shall be capable of total flooding, local application, or hand hose line design.
 - 1.3.5 The system shall be installed and serviced by personnel trained by the manufacturer.
- 1.4 Quality Control
 - 1.4.1 Manufacturer: The Low Pressure Carbon Dioxide System shall be manufactured by a company with at least five years experience in the design and manufacture of engineered fire suppression systems.
- 1.5 Warranty
 - 1.5.1 The low pressure CO₂ system components shall be warranted for one (1) year from date of delivery.
- 1.6 Delivery
 - 1.6.1 Packaging: All system components shall be securely packaged to provide protection during shipment.
- 1.7 Environmental Conditions
 - The low pressure storage unit shall be capable of operating in a temperature range of -10 °F to +120 °F (-23 °C to +49 °C).


- 2.0 PRODUCT
 - 2.1 Manufacturer
 - 2.1.1 ANSUL Incorporated, One Stanton Street, Marinette, WI 54143, Telephone (715) 735-7411.
 - 2.2 Components
 - 2.2.1 CO₂ Agent: The agent shall be a clean, dry, non-corrosive, non-damaging, non-deteriorating chemical. It shall dilute the oxygen content of the protected hazard to a point where it will not support combustion.
 - 2.2.2 Low Pressure CO₂ Storage Unit: The storage unit shall be built to the ASME code for unfired pressure vessels. The unit shall be insulated with four inches of insulation and covered with an aluminum vapor barrier. The unit shall be equipped with all necessary safety relief devices. The unit's refrigeration system shall be capable of maintaining the liquid CO₂ at a storage pressure of 300 psi (20.7 bar).
 - 2.2.3 Valves: Valves shall be capable of operation either manually, pneumatically, or electro-pneumatically. They shall be either ball or butterfly design. They shall include a spring return actuator and manual override.
 - 2.2.4 Detection System: The detection system shall be listed and approved by UL and FM and approved by the manufacturer for use with the low pressure CO_2 system.
 - 2.2.5 Nozzles: Nozzles shall be designed to direct the discharge of carbon dioxide in a liquid or gaseous state. The orifice size shall be determined by the manufacturer's computerized flow calculation program and based on the flow rate and system design required. Nozzles shall be corrosion resistant and available in natural brass, zinc plated steel, or painted red.
 - 2.2.6 Piping: Distribution and control piping shall meet the requirements stated in the manufacturer's listed installation manual.

3.0 IMPLEMENTATION

- 3.1 Installation
 - 3.1.1 The Low Pressure CO₂ fire suppression system shall be designed, installed, inspected, maintained, and recharged in accordance with the manufacturer's approved instruction manual.
 - 3.1.2 Training: Training shall be conducted by representatives of the manufacturer.

		Ē	(728)	(1456)	(1941)	(2669)	(3539)	(5833)	(7787)	(9626)	(11667)	(13620)	(17386)	(21353)	(25237)	(29118)	(33000)	(36884)	(40766)	(44650)	(48530)	(52413)	(56296)	(58237)
Dimensional Information Chart (E-Style Saddle Mounted Vessel)	Total	Volume gal																						
	((080)	(1361)	(1814)	(2495)	(3402)	(5443)	(7258)	(6350)	10886)	12700)	16330)	19958)	23587)	27216)	30845)	34474)	38102)	41731)	45360)	48990)	52618)	54432)
		Weight of (Ib	1500	3000	4000	5500	7500	12000	16000	20000	24000	28000	36000	44000	52000	00009	68000	76000	84000	92000	100000	108000	116000	120000
		eight kg)																						
	:	Empty Weight Ib (kg)	1200	3200	3500	4000	7500	0006	10200	11500	12650	14000	16800	20500	23500 (26500 (29500 (33000	35000 (37500 (40000	41600 (43200 (45000 (
		(mm)	(20)	(20)	(20)	(102)	(102)	(102/152)	(152)	(203)	(203)	(203)	(203)	(203)	(203)	(203)	(203)	(203)	(203)	(203)	(203)	(203)	(203)	(203)
	ші	<u>ם</u> ב.ב	ო	ო	ო	4	4	4/6	9	ω	ω	ω	ω	ω	8	ω	ω	ω	ω	ω	ω	8	ω	ω
		(<u>m</u>)	(.55)	(.58)	(66-)	(2.1)	(1.0)	(1.6)	(2.6)	(3.7)	(4.7)	(2.2)	(3.3)	(4.3)	(5.5)	(6.7)	(2.3)	(6.8)	(6.5)	(7.7)	(0.6)	(10.2)	(10.8)	(10.8)
	О	Lrft Lugs ft-in	1-9 3/4	2-11	4-3 5	0-2	3-3 1/2	5-2	8 8	12-3	154	7-2 5/8	11-0	14-0	18-0	22-0	17-6	22-3 1/2	21-4	25-4	29-5 1/2	33-3	35-6	35-6
		₽ E	(1.9)	(1.9)	(1.9)	(1.9)	(2.6)	(5.6)	(2.6)	(2.6)	(2.6)	(5.9)	(5.9)	(5.9)	(2.9)	(2.9)	(5.9)	(2.9)	(2.9)	(2.9)	(5.9)	(2.9)	(2.9)	(2.9)
	0: 0	Height ft-in (6-5	6-5 0	6-5 0	6-5 0	8-6	8-6	8-6	8-6	8-6	8-6	8-6	8-6	9-8	8-6	8-6	8-0 0	8-6	8-6	8-0	9-8 0	8-6	8-0 0
		(E)	(1.3)		(1.3)																			
	8	Width ft-in	4-3 5	4-3 6	4-3	4-3 6	5- 1 0	5-10	5-10	5-10	5- 1 0	7-4	7-4	7-4	7-4	7-4	7-4	7-4	7-4	7-4	7-4	7-4	7-4	7-4
		(m)	(2.4)	(3.6)	(4.1)	(4.8)	(3.6)	(4.8)	(2.6)	(6.7)	(6.7)	(5.7)	(6.9)	(8.7)	(6.6)	(11.1)	(12.3)	(13.6)	(14.8)	(16.0)	(17.2)	(18.4)	(19.7)	(20.3)
	: • •	Length ft-in	7-11	11-8	13-6	15-8	11-10	15-10	19-9	23-4	26-5	19-6	25-0	28-6	32-6	30-0 30-0	40-6	44-6 6	48-6	52-6	56-6	9-09	64-6	9 9 9
		Part No.	425397	425398	425399	425400	425950	425899	425928	425404	425405	425406	425407	425408	425409	425410	425411	425412	425413	425414	425415	425416	425417	425418
Dimensi	Tank î	Capacity (Tons)	0 .75	1.5	2	2.75	► 3.75	9	∞ ▲	10	12	14	18	22	26	30	34	38	42	46	50	54	58	60

ANSUL is a trademark of Ansul Incorporated or its affiliates.

Ũ ī Ë

ANSUL

Ansul Incorporated Marinette, WI 54143-2542

tyco

715-735-7411 www.ansul.com