

Media

Behringer[®] Ultra-WindTM FC Series Wound Bleached Cotton Depth Filter Cartridges offer absolute filtration for critical process applications, and FDA approval of raw materials for food and beverage contact. Manufactured from FDA-grade bleached cotton material, these inexpensive cartridges are an excellent match for a variety of industrial fluids, as well as organic solvents and edible oils. Utilizing an advanced computer-controled manufacturing process, Behringer Process Filtration's string-wound cartridges are able to achieve a true graded-density media layer. This precisely-patterned fiber structure creates a consistently reliable media with expanded void volume, creating a cartridge that performs with a gradual pressure increase over the life of the cartridge, rather than the abrupt flow cutoff typical of competitor's cartridges. Ultra-Wind[™] cartridges are similar to our MAX-Wind[™] cartridges in materials and craftsmanship, but add HVV+TM technology. HVV^{TM} is a precise patterning process that creates a higher void volume area in the graded density depth filter media, and is patterned to offer efficiencies up to 99.99%. This absolute-rated cartridge yields higher dirt-holding capacities, higher efficiencies, and better dirt-unloading properties. HVV+TM filter cartridges typically have dirt-holding capacities double that of conventional wound cartridges.

Absolute-Rated Cartridges **FDA** Listed Materials

Performance:

Max Differential Pressure:	60 psid (3.5 bar)
Recommended Change Out:	25 psid (1.75 bar)
Filtration Rating:	051351020

Filtration Rating: (Micron sizes)

0.5.1. 5. 5.10.20 25, 30, 50, 75, 100, 200, 250, 400

Features and Benefits

•Graduated Density HVV+TM Technology provides higher void volume resulting in longer life, higher efficiencies, and lower pressure drops.

• $HVV+^{TM}$ cartridges have more than double the dirtholding capacity of standard wound cartridges.

•Bleached cotton raw materials meet FDA regulations for contact with food and beverages.

•Offered in a wide variety of lengths from 4 in. To 50 in., With diameters ranging from 1.5 in to 4.5 in.

•Core covers, core extenders, and various different end cap configurations are available to make installation simple in any manufacturer's filter vessel.

•Core options include 304SS, 316SS, Tin, Extended, and polypropylene snap-in extender.

•Filter Construction is easily customized because of HVVTM computer-aided manufacturing.

Typical Applications

- •Chemicals
- •Consumer Products •Beverages
- •Water •Juices
- •Edible Oils •Photography Chemicals
- •Pharmaceuticals

•Connectors

- •Paint/Ink
- •Process Water

Flow vs. Pressure Information Single 10-inch Wound Cotton Cartridge

Pressure drop calculation:

Pressure drop curves are based on fluid with viscosity similar to water, and element length of 10 inches. P across the media is proportionally related to viscosity and element length. The formula for calculating different pressure drops is as follows: New $P = P Curve x Viscosity(cSt) / # of 10 in. Lengths^2$

Notes:

1.) Cartridges should not exceed the recommended max flow rate of 10gpm per 10 inch length. All applications differ, and actual flow rates should be determined on an individual basis.

2.) Initial pressure drop should be kept as low as possible. Initial pressure drops over 3-4 psid may considerably decrease cartridge life.

Operating Conditions

Max Operating Temperature:

 300° F (149° C) with steel or stainless steel core 180° F (82° C) with Polypropylene core

Max Permissible p:

60 psid (4 bar) @ ambient temp.

Recommended Change-Out p: 25 psid (1.75 bar)

Max Recommended Flow Rate: 10 gpm (37.8 lpm) per 10 in. Length¹

Construction

Media:

Absolute-Rated FDA-Grade Bleached Cotton

End Caps:

222 O-rings, 226 O-rings, Fins, DOE Caps, Spears, Flat Gaskets, Springs, Core Extenders, Custom

Gasket / O-ring Materials:

Polyfoam, Buna-N, Viton, Silicone, EPR, Neoprene

Outside Diameter:

2.5 in. (63.5 mm)

Inside Diameter:

1.06 in. (27 mm)

Nominal Lengths (in):

4³/₄, 9³/₄, 10, 19¹/₂, 20, 29¹/₂, 30, 39, 40, 50, 60

		Т	able 1	Table 2	Table 3	Table 4	Table 5	Table 6
	UF					-		-
		_						
Lengt	h Table 1	Core		Table 2	Filtration	Rating Table 3	Adder	S Table 4
4.9	4.875 in. (half)	N	None		0.5 micron	30 micron	C	Closed End Cap (1 end)
9.8	9.75 Inch	Р	Polypi	opylene	1 micron	50 micron	222	222 O-ring / Closed
10	10 Inch (single)	Т	304S/S	S	3 micron	75 micron	222F	222 O-ring / Fin End
19.5	19.5 Inch	S	316S/S	S	5 micron	100 micron	226	226 O-ring / Closed
20	20 Inch (double)	C	1.56 S	teel	10 micron	200 micron	226F	226 O-ring / Fin End
29.75	29.75 Inch	D	1.22 P	P	20 micron	250 micron	FG	Flat Gasket / DOE Caps
30	30 Inch (triple)	F	Glass	PP	25 micron	400 micron	CS	Compression Seal
39	39 Inch	М	1.56 P	P			PS	Polypropylene Spring
40	40 Inch (quad)	E	EPT				PCE	PP Core Extender
50	50 Inch						TCE	304 S/S Core Extender
			-	~			SCE	316 S/S Core Extender
Seals		Table 5	Col	re Covei	rs Ta	able 6		
omit	None depends o	n adders	omi	it None				
E	EPR		C	Cover	(compatible			
N	Neoprene	e mater			ial to filter med	dia)		
V	Viton							
S	Silicone							
B	Buna-N (Nitrile)							
PF	Polyfoam							

The information contained in this document is provided as an aid in properly selecting products and/or options. It is intended to be used by technically experienced users for general reference only. The supplier assumes no responsibility or liability for the accuracy or completeness of this document, as well as results obtained by the use of this information. Due to the variety of possible operating conditions, it is highly recommended that the user make their own tests to determine the safety and suitability of all products and combinations thereof. The user is solely responsible for final determination of such conditions.

