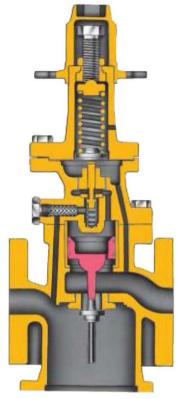


COSPECT®

STEAM PRESSURE REDUCING VALVES

Three-in-One


Pressure Regulator, Separator, and Steam Trap

COSPECT:

Three-in-One Design

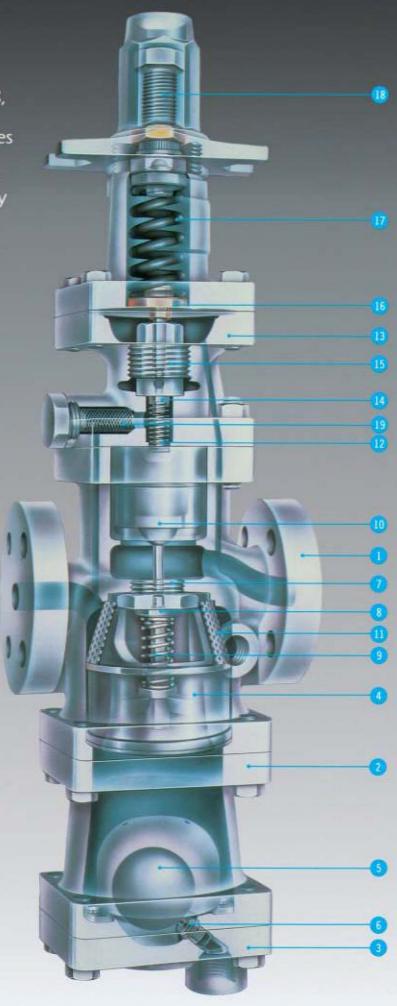
A Product of Advanced Fluid Control Technology

1. SAS **Shock-Absorbing Spherical piston**

Three sub-units combine to form the reliable, accurate, cost-effective COSPECT

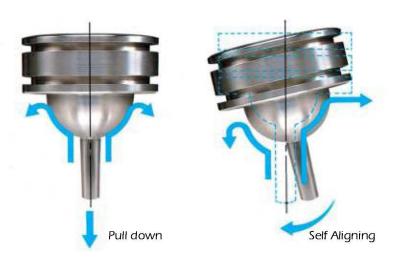
Reducing valves had remained essentially unchanged for decades—conventional designs seemed good enough. But manufacturers increasingly demanded more effective process control for improved product quality; **TW** responded with this remarkable innovation.

With conventional pressure reducing valves, wide variations in primary pressure cause the secondary pressure to "drift"; this produces temperature variation, which results in inconsistent product quality. Also, valve hunting and vibration make it difficult to accurately set the precise system pressure needed. These valves are also subject to failure from the effects of rust, scale, and other impurities. In addition, conventional condensate separators do not efficiently remove condensate, reducing the productivity of steam equipment.


TW applied its fluid control technology to solve these critical problems. The answer? The **COSPECT**—an innovative design with three unique features: **SAS, SCE** and SST.

3. SST

Construction


The three remarkable features—**SAS**, **SCE**, and **SST** combine into a single space-saving unit, which also simplifies system layout, piping, and maintenance. **COSPECT**. Three problemsolvers in one to increase productivity and improve product quality.

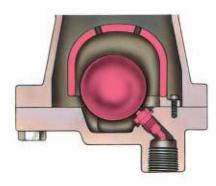
	Part	Material
1	Main body	Cast iron or Ductile cast iron
2	Trap body	Cast iron or Ductile cast iror
3	Trap cover	Cast iron or Ductile cast iror
4	Separator	Stainless steel o Ductile cast iror
5	Float	Stainless steel
6	Trap valve seat	Stainless steel
7	Main valve seat	Stainless steel
8	Main valve	Stainless steel
9	Main valve spring	Stainless steel
10	Piston	Stainless steel
1	Separator screen	Stainless steel
12	Pilot valve spring	Stainless steel
13	Pilot body	Cast iron or Ductile cast iron
14	Pilot valve	Stainless steel
15	Pilot valve seat	Stainless steel
16	Diaphragm	Stainless steel
1	Coil spring	Carbon steel
18	Adjustment screw	Cr-Mo steel
19	Pilot screen	Stainless steel

Three COSPECT Design Breakthroughs Provide Dry Saturated Steam at a Constant Pressure and Temperature.

1. SAS: Shock-Absorbing Spherical Piston

High Stability of Set Pressure

The spherical surface of this SAS piston creates a low pressure area in the passing steam flow. This pulls the piston down, making the orifice easy to open for accurate, responsive control. The piston is also self-centering when the valve stem tilts. As illustrated, steam flows slower through the shorter path on the left side than on the right side, creating a high pressure region on the left side and a low pressure region on the right side. This pressure difference causes the piston to self-align. The unique SAS design permits a smooth high velocity flow eliminating the turbulent steam flow characteristic of conventional valve designs.


2. SCE: Super Cyclonical Effects Separator

98% Separation Efficiency

This unique SCE separator provides dry saturated secondary steam by effectively removing condensate and scale with its 98% separation efficiency, thus improving steam equipment productivity due to greater heat transfer. The pressure reducing valve service life is extended since the effective removal of condensate and scale protects the main valve from erosion.

3. SST: Super Steam Trap

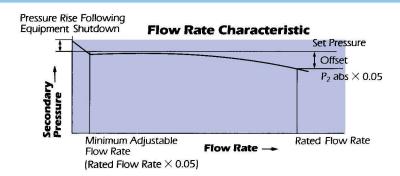
Continuous Discharge and Seal-tight Shut-off

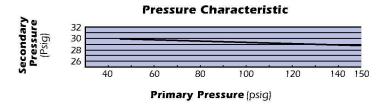
Separated condensate is instantly removed by this SST continuous discharge trap. The unique three-point seating design and precision ground spherical float provides seal-tight shut-off even under no-load conditions.

Glossary

Primary pressure: Steam pressure at the inlet of the pressure regulator.

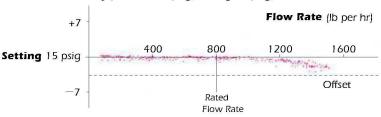
Secondary pressure: Steam pressure at the outlet of the pressure regulator.


Minimum adjustable flow rate: Minimum flow that can be maintained at a constant pressure level.

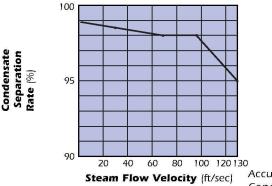

Set pressure: Desired secondary pressure.

Rated flow rate: Maximum flow rate, at secondary pressure, that can be obtained within a given offset when the primary pressure is held constant.

Pressure rise: The increase in set pressure, following steamusing equipment shutdown by closing the inlet valve to the equipment.


Offset: Difference between actual secondary pressure and set pressure, when flow rate is increased from the minimum adjustable flow rate to the rated flow rate while primary pressure is held constant.

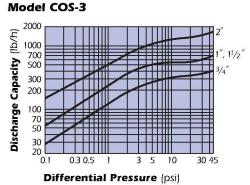
Pressure vs. Flow Rate


Primary pressure 30 psig, setting 15 psig, size 1 inch

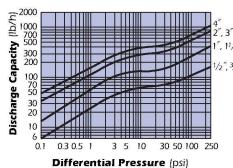
Above: The pressure and flow characteristic data prove stable valve performance: accurate pressure reduction is maintained even if flow varies. This test data was obtained by computer-controlled automated testing equipment.

Left: After setting the secondary pressure of 30 psig when the primary pressure is 45 psig the chart illustrates the variation of the secondary pressure when the primary pressure is increased to 150 psig.

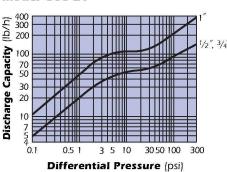
Steam Flow Velocity vs. Separation Rate

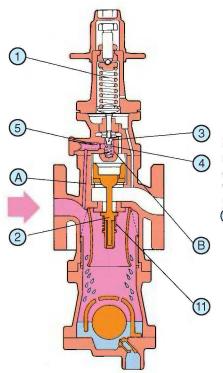

Accuracy: ±2% Condensation: 90 - 100 lb per hour This test data demonstrates that the SCE separator provides the exceptionally high condensate separation rate of 98.5% at a steam flow velocity of 33 ft/sec.

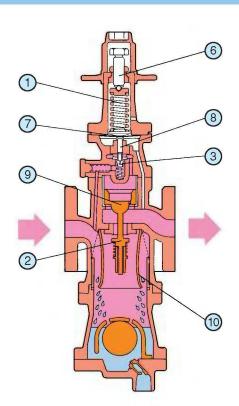
Separation rate (%) is given as:


 $\frac{\text{quantity of condensate discharged}}{\text{quantity of incoming condensate}} \times 100$

·····This combined with the pressure reducing function of the valve, delivers virtually 100% dry steam downstream.

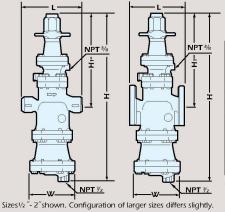

Condensate Discharge Capacities


Model COS-16


Model COS-21

This discharge capacity chart shows maximum hourly discharge rates of condensate 11°F below saturated steam temperature. The pressure differential is the difference between the trap primary and secondary pressures.

Until upper coil spring 1 is compressed, main valve 2 and pilot valve 3 are held closed by main valve spring 1 and pilot valve spring 4. Steam enters through passage A, passes through pilot screen 5 and enters pilot chamber B.


Standard Specifications

Model	co	S-3	COS-16		COS-21	
Body Material	Cast	Iron	Cast Iron		Ductile Cast Iron	
Connection	Screwed	Flanged	Screwed	Flanged	Screwed	
Size (in)	3/4,1	1, 11/2, 2	1/2, 3/4, 1	1, 11/2, 2, 3, 4	¹ /2, ³ /4, 1	
Maximum Operating Pressure (psig) PMO	45		2.5	50	300	
Maximum Operating Temperature (°F) TMO	42	28	42	428		
Maximum Allowable Pressure (psig) PMA	250		25	300		
Maximum Allowable Temperature (°F) TMA	428		428		428	
Primary Pressure Range (psig)	15 – 45		30 – 250		190 – 300	
Adjustable Differential Pressure (psi)	=		10 – 120		30 – 120	
Pressure Adjustment Range (psig)	1.5 – 7		5 – 210		80 – 252	
Maximum Adjustable Secondary	7		84% of primary pr	84% of primary		
Pressure (psig)			pressure minus 10 p:	pressure		
Minimum Adjustable Secondary	1.5		10% of primary pressu	80 psig (or primary		
Pressure (psiq)			minus 120 psi, whichever	pressure minus 120 psi,		
Pressure (psig)			pressures up throug	whichever is higher)		
Minimum Adjustable Flow Rate	5% of rated flow rate (sizes $\frac{1}{2}$ " – 2"); 10% of rated flow rate (sizes 3" – 4") 5% of rated flow rate					
Accuracy of Regulation (psi) AOR	± 1 (under steady flow conditions)					
Seat Leakage Rating		Less than 0.1% of rated flow rate				

CAUTION

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

Dimensions

	Cino	Size L (In)				w	Mainle	
		Screwed Connects to ASME Class			Н		H1	Weight
	(in)	NPT	125FF	250RF				(lb)**
	1/2*	67/8	_	_	19 1/2	111/4	41/8	(32)
16	3/4	6 '/8	_	_	19.72	11.74	4 7/8	(33)
cos-3/cos-	1	7 1/2	615/16	7 ³ /8	20 % 6	111/8	5 ½	46(44)
Įĕ	1 1/2	_	81/4	8 3/4	22 ½	11 ⁷ /8	6 ¹ /2	60
S-3	2	_	10	101/4	25	123/8	7 ½	95
18	3*	_	143/8	151/16	34 1/4	161/8	11	159
	4*	_	171/16	1711/16	40 1/16	1 7 5/8	133/4	231
COS-21	1/2	171	_	_	20 1/4	12	4 7/8	(33)
	3/4	67/8	=	—	20 74	12	4 78	(35)
ŭ	1	7 1/2		_	21 5/16	117/8	5 ½	(44)

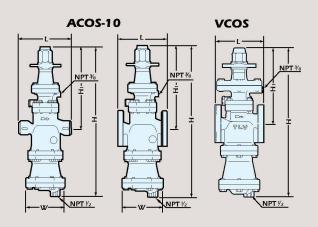
Other standards available, but length and weight may vary * COS-16 only ** Weight is for Class 250 RF, () for NPT

2

When secondary pressure is set by tightening adjustment screw (6), upper coil spring (1) is compressed and diaphragm (7) flexes, forcing pilot guide (8) to open pilot valve (3). Steam enters chamber above piston (9), forcing it down.

Main valve ② opens the orifice, providing steam to the secondary side. Before entering the main valve, steam passes through the separator ⑩. The angled separator blades cause the steam to whirl and release the entrained condensate, which is discharged continuously through the steam trap.

Some steam from the outlet side flows through outlet pressure passage (c) (internal sensing) or the external sensing line (external sensing) and enters a chamber below the diaphragm (7), and lifts it. The position of pilot valve (3) is then determined by the balance of the upward force on the diaphragm with the downward force of the upper coil spring (1). Thus the preset secondary steam pressure itself adjusts the force applied to the piston (9) and the opening of the main valve (2). Secondary pressure remains stable, and dry saturated steam is supplied at all times.


Specifications For Other COS Series Pressure Reducing Valves

Model	ACC)S-10	vcos	
Application	Air		Vacuum Pressure Steam	
Body Material		Cast Iron		
Connection	Screwed	Flanged	Flanged	
Size (in)	1/2,3/4,1	1, 11/2, 2	1, 11/2, 2	
Maximum Operating Pressure (psig) PMO	1	25	30	
Maximum Operating Temperature (°F) TMO	212		302	
Maximum Allowable Pressure (psig) PMA	2	50	30	
Maximum Allowable Temperature (°F) TMA	428		302	
Primary Pressure Range (psig)	15 – 125		15 - 30	
Adjustable Pressure Range (psig)	7 –	100	-12 – 12	
Minimum Differential Pressure (psi)		7	_	
Minimum Adjustable Flow Rate	10% of rated flow rate			
Accuracy of Regulation (psi) AOR	± 1.5% (under stea		dy flow conditions)	
Seat Leakage Rating			Less than 0.1% of rated flow rate	

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted.

Dimensions

ACOS-10 Screwed*

Size(in)	L	Н	Hı	W	Weight(lb)
1/2	61/8	191/2	111/4	41/8	32
3/4				7 /8	33
1	71/2	20 % 16	111/8	57/8	44

* NPT, other standards available

ACOS-10/V-COS Flanged

	Size	L Connects to ASME Class		н	Hı	w	Weight
	(in)	125FF	250RF				(lb)*
10	1	615/16	73/8	20%6	111/8	57/8	42
ACOS-10	11/2	81/4	83/4	221/2	117/8	61/2	55
¥	2	10	101/4	25	12 3/8	711/16	88
V-COS	1	615/16	73/8	22 ⁷ /8	133/8	51/2	55
ISI	11/2	81/4	83/4	2413/16	143/16	6 ⁷ /8	66
Ż	2	10	101/4	27 1/4	14 5/8	7 11/16	99

Other standards available, but length and weight may vary

* Weight is for Class 125 FF

DO NOT DISASSEMBLE OR REMOVE THIS PRODUCT WHILE IT IS UNDER PRESSURE. Allow internal pressure of this product to equal atmospheric pressure and its surface to cool to room temperature before disassembling or removing. Failure to do so could cause burns or other injury. READ INSTRUCTION MANUAL CAREFULLY.

TLV: CORPORATION

13901 South Lakes Drive, Charlotte, NC 28273-6790

Phone: 704-597-9070 Fax: 704-583-1610

E-mail: tlv@tlvengineering.com
For Technical Service 1-800 "TLV TRAP"

Member of

Fluid Consrols Institute, Inc.
Tokolod Revirus for Intranseable and Tail Conve

Manufacturer

ISO 9001/ISO 14001

(M)