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Acute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of
high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if ex-
posed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decon-
taminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating
agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2 gas inactiva-
tion of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS cou-
pons at the concentration of 107 PFU/coupon. The samples were treated with ClO2 gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5
min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons
with ClO2 gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infec-
tious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the
mechanism of ClO2 gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral
genomic RNA. In conclusion, treatment with ClO2 gas can serve as an effective method to inactivate a human norovirus surro-
gate on SS contact surfaces.

Human norovirus (NoV) is the most prevalent cause of food-
borne illnesses worldwide (1–3). This etiological agent ac-

counts for more than 58% of all foodborne illnesses, causing 5.5
million cases of acute gastroenteritis in the United States annually
(1). It is estimated that human NoV is responsible for more than
95% of nonbacterial acute gastroenteritis. Human NoV transmis-
sion occurs primarily through the fecal-oral route, either via per-
son-to-person contact or contaminated food, water, fomites, and
environmental surfaces (4, 5), and airborne transmission of viral
particles may also be possible due to aerosolized vomitus or fecal
material (6). Human NoV is highly contagious, with an infectious
dose as low as 10 particles, and outbreaks often occur in confined
settings, including restaurants, coach buses, hotels, nursing
homes, hospitals, and cruise ships (7–11). Although human NoV
causes significant health and emotional burdens, research on hu-
man NoV has been hampered due to the lack of an in vitro cell
culture method and a small animal model (12). Therefore, we
must rely on proper surrogates to study the survival of human
NoV. Currently, cultivable animal caliciviruses, such as murine
norovirus (MNV), feline calicivirus (FCV), and Tulane virus
(TV), are used as surrogates for the study of human NoV (13, 14).
Studies have shown that MNV is more resistant to acid, heat, and
environmental stresses than FCV (15). While MNV and TV
have similar long-term storage stability and resistance to heat
treatment, MNV was found to be more stable than TV when
treated with low concentrations (�2 ppm) of chlorine (16).
Therefore, MNV is a better surrogate to study human NoV
inactivation by gaseous chlorine dioxide (ClO2) than either
FCV or TV.

Environmental contact surfaces are often contaminated with
human NoV (17, 18). Surface contamination by human NoV may
occur in restrooms, when vomitus or fecal excrements get aero-

solized (6), or outside restrooms where poor hand hygiene and
ineffective sanitation further spread the virus to surfaces (18). In-
dividuals infected with human NoV can shed up to 9.5 � 1010 viral
genomic RNA copies/g of feces, and viral shedding can last up to
28 days (19). Viral shedding lasts long after symptoms have sub-
sided; moreover, asymptomatic individuals have also been shown
to shed high levels of human NoV RNA (19, 20). Individuals lack-
ing symptoms of an active human NoV infection, therefore, often
unknowingly spread the virus to foods and contact surfaces (21).
With regard to the food industry, areas susceptible to contamina-
tion include the processing plant, equipment, common surfaces,
and food service utensils (such as plates, forks, and glasses), and
this may occur through a number of routes, including exposure to
infected food handlers and high-risk food items, such as oysters
and fresh produce.

Sanitization of contact surfaces, regardless of whether directly
or indirectly in contact with food, is a common practice in the
food industry. Most routine sanitation procedures involve the use
of liquid sanitizers, such as soap and water, chlorine, sodium hy-
pochlorite, peracetic acid, hydrogen peroxide, ozone, and quater-
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nary ammonium compounds (22, 23). However, these sanitizers
are not effective in inactivating and removing foodborne viruses
from contact surfaces at Environmental Protection Agency (EPA)-
and Food and Drug Administration (FDA)-permitted concentra-
tions. Sodium hypochlorite and quaternary ammonium sanitizers
achieved only a 0.5-log reduction in MNV-1 titer when tableware
and food preparation utensils (plates, drinking glasses, and stain-
less steel forks) were contaminated with MNV (24). Development
of an effective sanitizer for the inactivation of human NoV, there-
fore, is urgently needed.

ClO2 gas is a strong oxidizer and is one of the emerging tech-
nologies for decontamination of contact surfaces and fresh pro-
duce. Besides being an effective biocidal agent (25, 26), ClO2 is
dispersed through the air and can be distributed to areas beyond
the reach of liquid sanitizers. It has been shown that gaseous ClO2

is a rapid and effective sterilizing agent active against bacteria,
yeasts, and molds; however, its ability to inactivate foodborne vi-
ruses is less established. The objectives of this study, therefore,
were to determine the kinetics of MNV-1 inactivation on stainless
steel (SS) coupons when exposed to different concentrations (1,
1.5, 2, 2.5, and 4 mg/liter) of ClO2 gas and to determine the mech-
anism of viral inactivation by ClO2 gas.

MATERIALS AND METHODS
Cell culture and virus propagation. Murine norovirus strain 1 (MNV-1)
was kindly provided by Herbert W. Virgin IV of the Washington Univer-
sity School of Medicine. MNV-1 was propagated in confluent monolayers
of the murine macrophage cell line RAW 264.7 (ATCC, Manassas, VA)
and maintained in Gibco Dulbecco’s modified Eagle medium with Glu-
taMax (Invitrogen, Grand Island, NY) supplemented with 10% heat-in-
activated fetal bovine serum (FBS; Thermo Scientific, Lenexa, KS). For
viral stock preparation, MNV-1 was inoculated into confluent RAW 264.7
cells at a multiplicity of infection of 0.01 and incubated at 37°C in 5% CO2

for 48 h. When extensive cytopathic effects were observed, MNV-1 was
harvested by freeze-thawing three times. After centrifugation at 3,000
rpm for 15 min, the supernatant was collected and stored at �80°C for
later use.

Virus purification. Purified MNV-1 stock was prepared using the
method previously described by Lou et al. (63). Large stocks of MNV-1
were generated by inoculation of 8 to 10 confluent T150 flasks of RAW
264.7 cells, as described above. Following harvest, the viral suspension was
centrifuged at 8,000 � g for 15 min to pellet cellular debris in a Sorvall
SS-34 rotor (Kendro Laboratory Products, Germany). The supernatant
was collected and incubated with DNase I (10 �g/ml) and MgCl2 (5 mM)
at room temperature. After 1 h of incubation, 10 mM EDTA and 1% lauryl
sarcosine were added to stop DNase activity. Subsequently, MNV-1 was
concentrated by centrifugation at 82,000 � g for 6 h at 4°C in a Ty 50.2
rotor (Beckman Coulter, Fullerton, CA). Pelleted virus was resuspended
in phosphate-buffered saline (PBS) and further purified by centrifugation
at 175,000 � g for 6 h at 4°C with a sucrose gradient (7.5% to 45%) in an
SW55 Ty rotor (Beckman Coulter). Finally, 100 �l of PBS was used to
resuspend the final virus-containing pellets. The viral titer was deter-
mined by plaque assay on RAW 264.7 cells.

Viral quantification by plaque assay. RAW 264.7 cells were seeded in
multiwell 6-well tissue culture plates (BD Falcon, Franklin Lakes, NJ) at a
density of 2 � 106 cells per well. After 24 h of incubation, cell monolayers
were infected with 400 �l of a 10-fold dilution series of the virus. The
plates were then incubated for 1 h at 37°C with gentle shaking every 10
min during the 1-h incubation period. After incubation, cells were over-
laid with 2.5 ml of Gibco minimum essential medium (Invitrogen) con-
taining 1% UltraPure low-melting-point (LMP) agarose (Invitrogen), 2%
FBS, 1% sodium bicarbonate, 0.1 mg of kanamycin/ml, 0.05 mg of gen-
tamicin/ml, 15 mM HEPES (pH, 7.7; Sigma-Aldrich, St. Louis, MO), and

2 mM L-glutamine (Invitrogen). After incubation at 37°C and 5% CO2 for
48 h, the plates were fixed with 2 ml of 10% formaldehyde for a minimum
of 2 h, followed by 30 min of staining with crystal violet.

Preparation of SS coupons. SS coupons (dimensions, 1.3 cm by 5 cm;
area, 6.5 cm2) were completely submerged in 5.25% sodium hypochlorite
for 10 min, followed by rinsing with deionized water. Rinsed coupons
were wiped dry with paper towels, wrapped in aluminum foil, and then
autoclaved.

Inoculation of MNV-1 on SS coupons. In a class II biosafety cabinet,
sterile coupons were transferred into petri dishes. One hundred microli-
ters of MNV-1 (approximately 108 PFU/ml) was inoculated onto the sur-
face of each stainless steel coupon to achieve a final concentration of 107

PFU/coupon. The inoculum was spread out evenly across the coupon
surface with the tip of a pipette. Each coupon was air dried for 15 min in
the biosafety cabinet. After air drying, coupons were transferred to indi-
vidual centrifuge tubes using sterile forceps. Coupon-containing centri-
fuge tubes were stored in a polystyrene cooler along with prefrozen refrig-
erant gel packs for temperature maintenance before transport to Purdue
University for ClO2 gas treatment. All samples (including control) were
transported and stored under the same conditions before, during, and
after treatments.

Treatment of MNV-1 on stainless steel coupons by ClO2 gas. The
ClO2 gas was generated based on a method described by Trinetta et al.
(27). ClO2 gas treatments at concentrations of 1, 1.5, 2, 2.5, and 4 mg/liter
were used to treat SS coupons inoculated with MNV-1 for 1 to 5 min
inside a closed gas chamber. SS coupons were preconditioned for 10 min
at 25°C and 85% relative humidity prior to gas treatment. SS coupons
were taken out of the gas chamber after exposure to the desired ClO2

concentration for the specified time and were immediately transferred
into another 50-ml centrifuge tube containing 10 ml of PBS supplemented
with 1% sodium pyruvate for elution. After vortexing, SS coupons were
removed from the elution liquid. Surviving viral particles in the elution
liquid were quantified using the plaque assay method described above.
The 0-min time point serves as the recovery control and was used as the
starting MNV-1 titer to determine the D value. There was an approximate
0.7-log10 PFU/coupon loss of MNV-1 in the recovery control compared to
the initial inoculum level of 7.0 log10 PFU/coupon.

Treatment of purified MNV-1 in liquid medium by ClO2 gas. Ali-
quots (100 �l) of highly purified MNV-1 suspension (approximately 1010

PFU/ml) were prepared in 1.5-ml Eppendorf tubes. The tubes were pre-
pared and transported the same way as previously described in the inac-
tivation study section. Purified MNV-1 was treated by ClO2 gas at con-
centrations of 0.1 mg/liter for 30 s or 2 mg/liter for 5 min. Treated samples
were subjected to transmission electron microscopy (TEM), SDS-PAGE,
Western blot, and reverse transcription (RT)-PCR analysis.

Transmission electron microscopy. The highly purified MNV-1
particles were visualized using negative-staining electron microscopy.
A total of 20 �l each of the purified, untreated, and treated MNV-1
samples was fixed to copper grids with Formvar film (FF300-Cu; Elec-
tron Microscopy Sciences, Hatfield, PA) and negatively stained with
1% ammonium molybdate. Viral particles were then visualized under
the Tecnai G2 spirit transmission electron microscope (FEI Electron
Microscopes, Hillsboro, OR) at 80 kV at the Microscopy and Imaging
Facility at The Ohio State University, and images were captured on a
MegaView III side-mounted charge-coupled device (CCD) camera
(Soft Imaging System, Lakewood, CO).

RT-PCR. Viral RNA was extracted from the purified MNV-1 suspen-
sion using the RNeasy minikit (Qiagen, Valencia, CA) according to the
manufacturer’s instructions. A OneStep RT-PCR kit (Qiagen) was used to
perform RT-PCR. Two primers (forward, 5=-ATGAGGATGAGTGATG
GCGC-3=; reverse, 5=-TTATTGTTTGAGCATTCGGCC-3=) were de-
signed to amplify the MNV-1 major capsid protein (VP1) gene. The am-
plified products were analyzed on 1% agarose gel electrophoresis.

Analysis of viral protein by SDS-PAGE. Purified MNV-1 suspensions
(untreated and treated) were mixed with loading buffer containing 1%
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SDS, 2.5% �-mercaptoethanol, 6.25 mM Tris-HCl (pH, 6.8), and 5%
glycerol and boiled for 5 min. Viral proteins were separated on a 12%
polyacrylamide gel and were visualized by Coomassie blue staining. For
densitometric quantitation, all protein gels were scanned using a Typhoon
9210 scanner (GE Healthcare, Piscataway, NJ), and the intensities of pro-
tein bands were determined using ImageQuant TL software (GE Health-
care). For each protein band, background was subtracted, and the inten-
sities of ClO2 gas-treated protein bands were normalized to the value for
untreated controls. The percentage of protein remaining was calculated
for each treatment time.

Western blotting. Purified MNV-1 suspensions (untreated and
treated) were separated by 12% polyacrylamide gel and transferred onto a
Amersham Hybond enhanced chemiluminescence (ECL) nitrocellulose
membrane (GE Healthcare, Pittsburgh, PA) in a mini trans-blot electro-
phoretic transfer cell (Bio-Rad, Hercules, CA). The blot was probed with
rabbit anti-MNV VP1 polyclonal antibody (a gift from Herbert W. Virgin
IV) at a dilution of 1:10,000 in blocking buffer (5% skim milk), followed
by incubation with horseradish peroxidase-conjugated goat anti-rabbit
IgG secondary antibody (Santa Cruz Biotechnology, Santa Cruz, CA) at a
dilution of 1:20,000. The blot was developed with SuperSignal West Pico
chemiluminescent substrate (Thermo Scientific) and exposed with
GeneMate blue basic autorad film (Bioexpress, Kaysville, UT). The inten-
sities of protein bands were determined using ImageQuant TL software
(GE Healthcare), as described above.

Statistical analysis. All experiments were carried out in triplicate. Vi-
rus survival was expressed as the mean log10 PFU � 1 standard deviation.
For samples in which no MNV-1 was detected, the detection limit (2.5 �
101 PFU/coupon) was used for data analysis. The best-fitted linear regres-
sion was determined for each treatment curve, and the slope representing
the rate of MNV-1 inactivation was compared using Prism 6 (GraphPad
Software, Inc.). A P value of �0.05 was considered statistically significant.

RESULTS
Kinetics of MNV-1 inactivation on SS coupons using ClO2 gas.
SS coupons were chosen as a model for MNV-1 inactivation on

food contact surfaces. Figure 1 shows the kinetics of MNV-1 in-
activation using ClO2 gas concentrations of 1, 1.5, 2, 2.5, and 4
mg/liter at 25°C and a relative humidity of 85%. The D values for
MNV-1 inactivation by ClO2 gas treatments at 1, 1.5, and 2 mg/
liter were 2.788 min, 2.068 min, and 1.874 min, respectively (Table
1), and the values were not significantly different. At higher treat-
ment concentrations (2.5 and 4 mg/liter), the effectiveness of
MNV-1 inactivation was significantly enhanced. ClO2 gas at 2.5
mg/liter was found to reduce 3.02 log of MNV-1 after 1 min, and
inactivation below the detection limit (�1.4 log) was achieved
after 2 min of treatment (Fig. 1). The concentration of 4-mg/liter
ClO2 gas, on the other hand, was able to reduce the MNV-1 titer
below the detection limit after 1 min of treatment. ClO2 gas treat-
ments at concentrations of 2, 2.5, and 4 mg/liter were able to
achieve 3-log reductions in MNV-1 titers on SS coupons following
5, 2, and 1 min of exposures, respectively. The time required to
reach a 3-log reduction in MNV-1 titer, therefore, was reduced as
the concentration of ClO2 gas used for treatment increased.

ClO2 disrupts viral particles. To understand the mechanism
of MNV-1 inactivation by ClO2 gas, highly purified MNV-1 sus-
pensions were subjected to ClO2 treatment under two different
conditions: 0.1 mg/liter for 30 s and 2 mg/liter for 5 min. The first
treatment condition was selected because it achieved an approxi-
mate 0.5-log reduction and thus permitted the detection of a mix-
ture of inactivated and infectious viruses. In contrast, MNV-1 was
completely inactivated at 2 mg/liter for 5 min, and this allowed the
determination of the mechanism of virus inactivation under lethal
doses of ClO2. MNV-1 particles in the untreated control were
small and round structured virions, approximately 30 to 38 nm in
diameter (Fig. 2). When exposed to gaseous ClO2 at 0.1 mg/liter
for 30 s, the number of intact virus particles was significantly re-
duced, and some irregularly shaped particles were observed. In
some cases, broken particles with an empty viral capsid, resem-
bling virus-like particles, were observed. On the other hand, at a
ClO2 gas concentration of 2 mg/liter for 5 min, no intact virus
particles were found. Rather, a large amount of aggregated protein
debris and irregularly shaped particles (18 to 27 nm in diameter)
were observed. These results demonstrated that ClO2 gas damaged
the viral capsid and disrupted virion structure.

ClO2 degrades viral capsid protein. Although it is known that
ClO2 is an oxidizing agent, the impact of ClO2 on the viral capsid
protein is poorly understood. To gain mechanistic insight into
viral inactivation by ClO2, we determined whether viral proteins
were degraded. As shown in Fig. 3, a 58-kDa protein band was
observed in the untreated sample, which is consistent with the size

FIG 1 Effect of ClO2 gas concentrations on inactivation of MNV-1 on stain-
less steel coupons. Stainless steel coupons inoculated with107 PFU of MNV-1
were exposed to ClO2 gas with concentrations ranging from 1 mg/liter to 4
mg/liter for 5 min at 25°C and a relative humidity of 85%. The survival of
MNV-1 was determined by plaque assay. Data are the means of three repli-
cates. Error bars represent the means � standard deviations.

TABLE 1 Summary of parameters for best-fitted linear line under
various ClO2 gas treatment concentrations at 25°C and 85% relative
humidity

Concn
(mg/liter) Best-fit line equation

D value,
� 1/slope (min) R2a P

1 y � �0.359x 	 5.923 2.788 0.4444 0.0025
1.5 y � �0.484x 	 5.698 2.068 0.7391 �0.0001
2 y � �0.534x 	 5.632 1.874 0.6425 0.0001
2.5 y � �2.425x 	 6.021 0.412 0.9525 �0.0001
4 y � �0.359x 	 5.923 0.206 0.9989 �0.0001
a Coefficient of determination (R2) for the best-fit line equation. An R2 of 1 indicates
that viral inactivation is linear with increasing treatment time, while an R2 of 0 indicates
that viral inactivation is not linear with increasing treatment time.
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of viral major capsid protein (i.e., VP1). After treatment with ClO2

gas at 0.1 mg/liter for 30 s, the amount of the VP1 protein was
reduced to approximately 30% compared to the amount in un-
treated control. (Fig. 3, lanes 2 and 3). Interestingly, the VP1 pro-

tein was undetectable when MNV-1 was treated at 2 mg/liter for 5
min (Fig. 3, lane 4), suggesting that the VP1 protein was com-
pletely degraded under this condition. To determine whether the
treated viral protein was still able to react with antibodies, Western
blot analysis was performed using a polyclonal antibody against
the VP1 protein. As shown in Fig. 4, the amount of VP1 protein
detected by Western blotting was significantly diminished (ap-
proximately 30%) after treatment of ClO2 at 0.1 mg/liter for 30 s.
Consistent with SDS-PAGE analysis, VP1 protein was undetect-
able under the condition of 2 mg/liter for 5 min. Taken together,
these results demonstrated that ClO2 treatment degraded viral
capsid protein as the ClO2 concentration and treatment time in-
creased. In addition, the remaining VP1 protein after treatment of
0.1 mg/liter for 30 s was still able to react with norovirus-specific
antibody.

ClO2 degrades viral genomic RNA. We next determined
whether ClO2 damages viral genomic RNA. As shown in Fig. 5, a

FIG 2 The effect of ClO2 gas on the structure of MNV-1 particles. Purified
MNV-1 was treated with ClO2 gas at 0.1 mg/liter for 30 s and at 2 mg/liter for
5 min, and samples were observed by TEM. (A, B) Untreated MNV-1 virion.
(C, D) ClO2 gas-treated MNV-1 at 0.1 mg/liter for 30 s. (E, F) ClO2 gas-treated
MNV-1 at 2 mg/liter for 5 min.

FIG 3 Detection of MNV-1 major capsid protein using SDS-PAGE. Purified
MNV-1 was treated with ClO2 gas at 0.1 mg/liter for 30 s and at 2 mg/liter for
5 min. Major capsid protein (VP1) of untreated and treated viruses was ana-
lyzed by 12% SDS-PAGE, followed by Coomassie staining.

FIG 4 Western immunoblotting analysis of MNV-1 major capsid protein.
Purified MNV-1 was treated with ClO2 gas at 0.1 mg/liter for 30 s and at 2
mg/liter for 5 min. Identical amounts of untreated and treated samples were
separated by SDS-PAGE and subjected to Western blot analysis using rabbit
anti-MNV VP1 polyclonal antibody.

FIG 5 Effect of ClO2 gas on MNV-1 genomic RNA. MNV-1 genomic RNA
was extracted from either untreated or ClO2 gas-treated MNV-1. The VP1
gene of MNV-1 was amplified by one-step RT-PCR. The PCR product was
then visualized on a 1% agarose gel with ethidium bromide staining.
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1.5-kb band was observed in the untreated control, which is con-
sistent with the size of the MNV-1 VP1 gene. The VP1 gene was
also amplified in RNA samples extracted from MNV-1 treated by
ClO2 at 0.1 mg/liter for 30 s; however, the abundance of the VP1
gene decreased compared with the untreated control. The VP1
gene was not detectable in the RNA extracted from MNV-1 stock
treated by ClO2 at 2 mg/liter for 5 min in which MNV-1 was
completely inactivated, suggesting that MNV-1 RNA was com-
pletely degraded under this condition.

DISCUSSION

Environmental and food contact surfaces are one of the most
common routes for human NoV transmission (4, 7, 28–32). FDA-
and EPA-approved sanitizers, however, are not effective for the
inactivation and removal of human NoV from contact surfaces.
Research efforts investigating the virucidal effects of ClO2 gas on
human NoV and its surrogates have been very limited. In this
study, we used MNV-1 as a human NoV surrogate to determine
the stability of the virus on the surface of stainless steel coupons
when exposed to ClO2. We found that MNV-1 can be effectively
inactivated by ClO2 gas at a relatively low concentration (less than
4 mg/liter) for a short treatment time (less than 5 min). Therefore,
ClO2 gas can be used to inactivate MNV-1 on stainless steel sur-
faces.

Kinetics of MNV-1 inactivation by ClO2 gas. The efficacy of
viral inactivation using the ClO2 gas system depends on many
factors, including gas concentration, exposure time, temperature,
relative humidity, and the type of surface and food matrix. In
general, ClO2 inactivated MNV-1 in a dose- and time-dependent
manner. There was no significant difference in virus inactivation
induced by low ClO2 concentrations (1, 1.5, and 2 mg/liter). How-
ever, virus inactivation was significantly enhanced when higher
ClO2 concentrations (2.5 and 4 mg/liter) were used (P � 0.05). To
achieve a minimum 3-log reduction, only a 5-min treatment time
was needed using a gas concentration of 2 mg/liter at a relative
humidity of 85% and a temperature of 25°C. At a concentration of
4 mg/liter, 1 min was sufficient to achieve complete virus inacti-
vation (
5-log reduction).

Previously, it was reported that different viruses have different
susceptibilities to ClO2 gas (33–36). A systematic study compared
the efficacy of ClO2 and sodium hypochlorite solutions against
several viruses, including FCV, human influenza virus, measles
virus, canine distemper virus, human herpesvirus, human adeno-
virus, canine adenovirus, and canine parvovirus (33). Overall, the
study found that the efficacy of ClO2 against the viruses was ap-
proximately 10 times higher than that of sodium hypochlorite
(33). In general, the enveloped viruses (influenza virus, measles
virus, and herpesvirus) were more sensitive to ClO2 than nonen-
veloped viruses (FCV, adenoviruses, and parvoviruses) were (33).
In another study, a low concentration of ClO2 gas (0.05 ppm) was
able to cause a 6.5-log reduction of influenza A virus after 3 h of
treatment. In contrast, only a 2-log reduction of FCV was ob-
served even after 4 h of exposure time (35). This is possibly due to
the viral structure, with an enveloped virus (such as influenza
virus) being more sensitive to ClO2 than a nonenveloped virus
(such as FCV). In addition, different virus strains within the same
genus have also been shown to have different sensitivities to
ClO2. A 3-log reduction in simian rotavirus SA-11 was
achieved following treatment with the 0.2-mg/liter ClO2 solu-
tion after 60 s. However, in order to achieve the same log re-

duction in human rotavirus strain Wa, the treatment time
needed to be increased to 120 s (36). There also remains the
possibility that viral quasispecies from the same viral popula-
tion may have more resistance to ClO2 treatment than the rest
of the population or that aggregation of viral particles may
protect a subset of the viral population from ClO2 inactivation.
Though not directly investigated in this study, this may explain
the variability in MNV-1 inactivation observed at low ClO2

concentrations.
Vegetative bacterial cells commonly associated with foodborne

disease and food spoilage can be effectively inactivated by ClO2 gas
either at a high concentration for a short treatment time or at a low
concentration for a longer treatment time (25, 35). However, in
order to eliminate bacterial spores, elevated gas concentrations
and longer treatment times are necessary (37–39). Overall, fungi
have been shown to be more resistant than vegetative bacteria to
ClO2 gas treatment. ClO2 gas treatment at lower concentrations
(1.29 mg/liter to 1.74 mg/liter) only reduced yeast populations by
less than 1 log (40, 41). However, ClO2 gas treatments at higher
concentrations or longer exposure times were shown to be capable
of reducing yeast and mold populations (42, 43). Based on our
results, it appears that MNV-1 is more resistant than vegetative
bacteria and fungus to ClO2 gas treatment, although this was not
directly compared in the study. It has been well established that, in
general, nonenveloped viruses are more resistant than vegetative
bacteria and fungi to disinfectants, which also appears to be the
case for ClO2 gas.

Overall, the virucidal effect of aqueous ClO2 is well established
compared to that of the gaseous form. At 20°C, a 0.255-mg/liter
ClO2 solution was able to produce a 3-log reduction of MNV-1
after a contact time of 4.64 min (44). Similarly, treatment with
0.255- and 0.8-mg/liter ClO2 solutions with contact times of 0.25
and 1.1 min, respectively, was able to produce at least a 3-log
reduction of FCV (45, 46). For other enteric viruses, such as hu-
man adenovirus type 2 (HAd-2), it has been reported that a 6-log
reduction in viral infectivity was achieved using a ClO2 solution at
100 ppm for 1 min (33). A 500-ppm ClO2 solution was also shown
to inactivate 4.3 log of hepatitis A virus after 5 min of exposure at
22°C (47). It appears that ClO2 solution exhibits similar virucidal
activity as the gaseous form. However, most of these studies were
performed by directly mixing viral stock with ClO2 solution, not
by applying the ClO2 solution to virus dried on surfaces or by
adding any organic amendments. A recent study found that
chlorine solution can remove/inactivate less than 1 log of
MNV-1 from the surface of tableware and food preparation
utensils, although it can achieve more than a 5-log reduction of
Escherichia coli K-12 and Listeria innocua (24). This result dem-
onstrated that ClO2 solution may be ineffective against viruses
on the food contact surfaces. In contrast, our results indicated
that gaseous ClO2 is highly effective in inactivating MNV-1 on
the surface of SS coupons.

However, in the previously mentioned study, MNV-1 was
mixed with a cream cheese or reduced-fat milk food matrix and
applied to the utensils (24). It has been established that the pres-
ence of organic materials can affect the biocidal activity of ClO2

solution and, potentially, gaseous ClO2. Although not investigated
in this study, it will be critical to evaluate the effect of organic
matter on the inactivation of MNV-1 by gaseous ClO2 for the
application of this technology in industry. In addition, it has been
shown that ClO2 gas (5.0 mg/liter for 10 min) applied to lettuce
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and alfalfa sprouts leads to the presence of residual chlorination
byproducts (chlorite and chlorate) on the food, as well as negative
visual changes to the produce, such as discoloration (48). How-
ever, at the same level of ClO2 gas application, minimal chlorina-
tion byproduct or visual changes were observed in cantaloupe and
strawberries (48). Therefore, depending on the purpose of ClO2

application (i.e., surface disinfection versus food disinfection), the
concentration and treatment time must be considered to balance
biocidal efficacy with consumer safety. Overall, these results sug-
gest that gaseous ClO2 may be more effective against viruses than
aqueous ClO2 on stainless steel surfaces. Furthermore, the supe-
rior penetration capability of ClO2 gas has great potential to inac-
tivate virus-contaminated surfaces to which liquid disinfectants
cannot be applied.

The mechanism of viral inactivation by ClO2. Our study also
provides mechanistic insight into viral inactivation by ClO2. For
bacterial cells, it was reported that ClO2 disrupted bacterial pro-
tein synthesis, caused the loss of membrane permeability control,
and inhibited cell division (49–51). As for bacterial spores, ClO2

caused membrane damage, subsequently inhibiting spore germi-
nation (52). Viruses are highly diverse in their structures, and
virus inactivation mechanisms are often contradictory or equivo-
cal. It has been suggested that the inactivation mechanism of hep-
atitis A virus (a picornavirus) by ClO2 was due to the loss of the 5=
untranslated region of the genome and/or receptor-binding do-
main destruction on the capsid (53). It was also found that ClO2

inactivated poliovirus, another picornavirus, primarily by dis-
rupting a 40- to 80-nucleotide sequence in the 5=-noncoding re-
gion of the genome (54). On the other hand, working with bacte-
riophage MS2, it was found that the primary inactivation action of
ClO2 is viral protein degradation, not damage to the viral genome
(55).

Caliciviruses are nonenveloped, single-stranded, positive-
sense RNA viruses. The virion structure of caliciviruses is rela-
tively simple. The outer shell of the virus particle is a highly stable
protein capsid that protects the viral genomic RNA. We found
that the mechanism of MNV-1 inactivation by ClO2 involved
damage to the integrity of the viral capsid structure and degrada-
tion of the viral capsid protein and viral genomic RNA. ClO2 re-
acts with amino acids with electron-rich side chains, such as tryp-
tophan, tyrosine, cysteine, and histidine (56–60), which leads to
the disruption of primary and secondary structures, which ulti-
mately results in the degradation of the viral capsid protein, VP1.
Hauchman and others (61) found that naked viral RNA was more
susceptible to degradation than RNA extracted from treated virus
particles, suggesting that genomic RNA inside intact viral particles
was partially protected from ClO2 treatment. Similarly, Simonet
and Gantzer (62) found that poliovirus genomic RNA was still
detectable, even though the virus was completely inactivated.
Hence, this evidence suggests that the primary mechanism of
MNV-1 inactivation by ClO2 is the degradation of the viral capsid
protein and the disruption of the viral capsid structure, which lead
to the leakage of genomic RNA and the subsequent degradation of
RNA by ClO2.

In conclusion, our study demonstrated that MNV-1, a human
NoV surrogate, was effectively inactivated by ClO2 gas at relatively
low concentrations and short treatment times. ClO2 gas is a prom-
ising intervention to minimize the risk of contact surface-related
human NoV transmission. In addition, we found that ClO2 dam-
aged the viral particle structure and degraded viral proteins and

RNA, providing insight into the mechanism underlying viral in-
activation.
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