

GAR-SPRING

This technology provides the answer in difficult operating conditions

Europe, Middle East and Africa

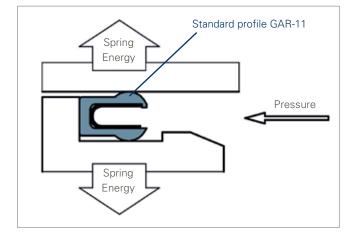
Leaders in Sealing Integrity

Table of Content

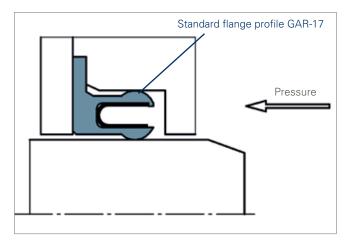
PRODUCT OVERVIEW	3
GAR-SPRING STYLES	4
GAR-SPRING PROFILES	6
GAR-SPRING HARDWARE DESIGN	9
GAR SPRING SPECIALS	10
GAR SPRING MATERIALS	11
TECHNICAL SPECIFICATIONS	13
ASSEMBLY NOTES	14
APPLICATION DATA SHEET	15

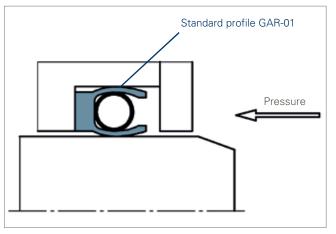
GAR-SPRING

Spring energized PTFE seals


The GAR-SPRING product line stands for reliable sealing of rotating, linear and static equipment in highest requirement applications. Their characteristic structure is a PTFE jacket material that is energized by a steel spring. GAR-SPRING products are designed to withstand temperatures from cryogenic down to -260°C and up to +340°C and are available in incremental sizes of 0,1 mm starting from 2 mm up to 2.000 mm rod diameter. The PTFE material offers outstanding chemical resistance, can deal with highly abrasive media and is attributed with industry specific certifications and qualifications.

GAR-SPRING products are suitable for many different applications in a variety of industries, especially in the oil and gas industry, chemical and pharmaceutical industry as well as food and pharma segments.


Advantages at a glance


- » Suitable for static, rotating and linear applications
- » Withstands temperatures from -260°C up to +340°C
- » Available in sizes from 2 mm up to 2.000 mm
- » Outstanding chemical resistance
- » Minimal housing size requirements
- » Available in 0,1 mm incremental sizes
- » Useable in food and pharmaceutical applications
- » Certificates available on request

Operating principle

The spring provides the basic force onto the PTFE jacket material in the early stage when there is no or only slight system pressure to enable proper sealing.

After the system pressure is applied GAR-SPRING products act as a self-enhancing sealing system: The higher the system pressure, the higher the radial force onto the PTFE jacket and therewith the sealing performance.

GAR-SPRING Styles

Helicoil Springs

0

FDA Helicoil Springs

Radial seals

Radial seals for static and dynamic applications, usable as rod and piston seals. The medium to relatively high spring load provides great sealing abilities, with only a slight increase in seal friction. Helicoil Springs are suitable for medium to high pressures.

Radial flange seals

Due to clamping of the flange the seal will be prevented from turning with the shaft. This can happen with standard designs due to thermal expansion and other effects with dynamic applications.

Axial seals

Axial seals do not seal radially. They are commonly mounted on the shaft and seal axially against a stationary housing or plate.

FDA Helicoil Springs (GAR-01 to GAR-10)

FDA compliant version that comes with an O-ring instead of the Helicoil Spring. More information is available on page 8.

GAR-SPRING Styles

U Springs

Garlock

Radial seals

U springs are designed for dynamic applications, usable as rod and piston seals. The spring has a low load going along with high banding. This enables a friction optimized sealing solution. U Springs are suitable for low to medium pressure and speed applications.

Radial flange seals

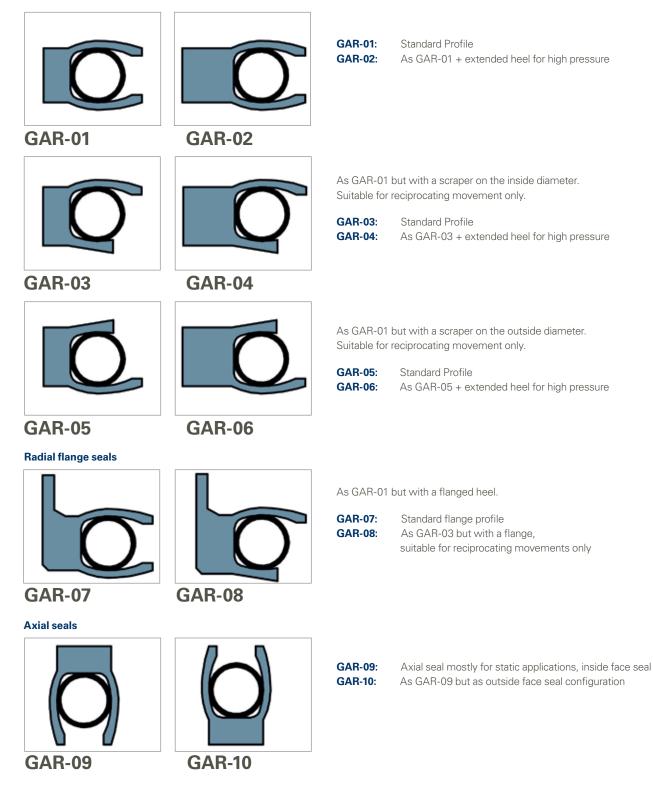
Due to the clamping of the flange the seal will be prevented from turning with the shaft. This can happen with standard designs due to thermal expansion and other effects with dynamic applications.

Axial seals

Axial seals do not seal radially. They are commonly mounted on the shaft and seal axially against a stationary housing or plate.

Axial U Finger Springs

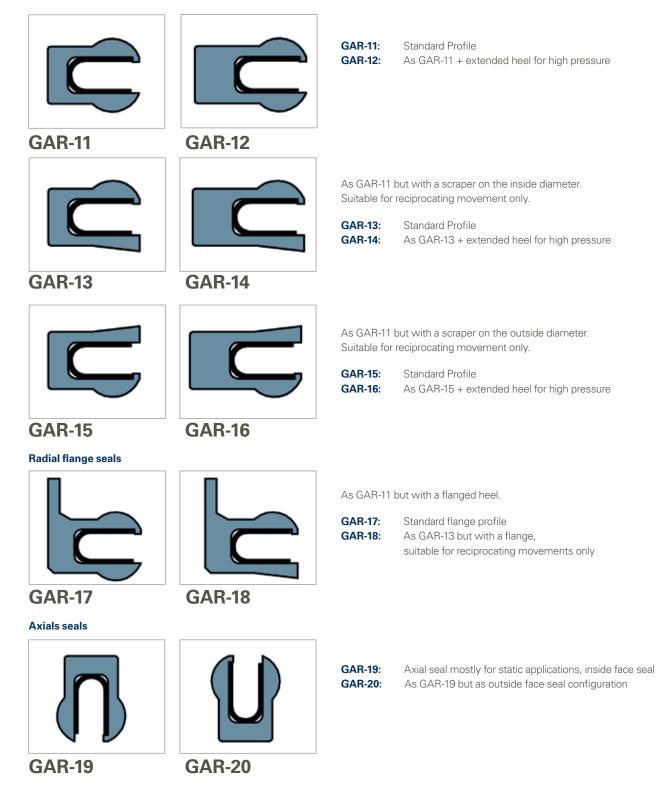
U Finger Springs are axially working face seals. They employ a heavy duty, high load spring that is recommended for extreme sealing conditions both static and dynamic.


FDA U Springs (GAR-11 to GAR-20)

FDA compliant version that comes with a silicone filled spring chamber. More information is available on page 8.

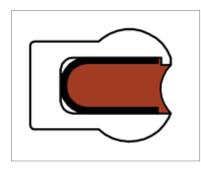
GAR-SPRING Profiles

Helicoil Springs

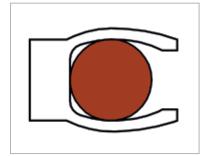

Radial seals

GAR-SPRING Profiles

Radial seals



GAR-SPRING Profiles


For food, beverage, cosmetics and pharmaceutical applications

Introduction

Garlock's spectrum of FDA compliant seals is designed specifically for food, beverage, cosmetics and pharmaceutical applications where possible contamination has to be prevented.

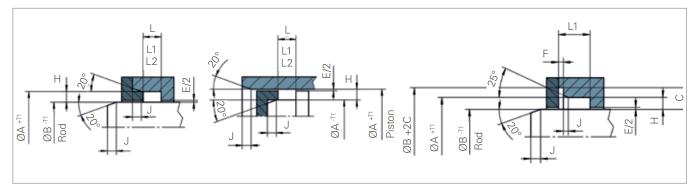
Our U Spring profiles (GAR-11 to GAR-20) can be modified to a FDA compliant version by filling the cavity with silicone (see illustration on the left). The silicone surface is very smooth and sealed thus preventing dirt and contamination from getting trapped. The silicone is available in red, white and transparent color.

Our Helicoil Spring profiles (GAR-01 to GAR-10) can also be adjusted to an FDA compliant version. Therefore the spring gets replaced by an O-ring (see illustration on the left) that fills the cavity to prevent contamination from getting trapped there.

Additional certificates (e.g. EC 1935/2004) are available on request.

Recommended FDA Materials

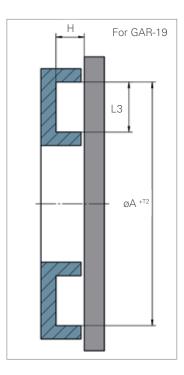
Code	Description	Color
01	Virgin PTFE	White
10	UHMW-PE	White
15	Filled PTFE	White
22	Modified PTFE	White

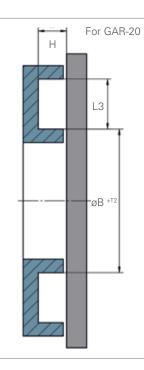

The temperature rating will decrease due to the temperature limits of silicone. Please contact Garlock's technical department for further information.

GAR-SPRING Hardware Design

Hardware design for Helicoil and U Springs

Radial seal: Hardware design




Cross section*	Н	T1	L +0,3/-0	L1 +0,3/-0	L2 +0,3/-0	C +/-0,15	F +/-0,05	J +/-0,15	E NOM
1	1,42 / 1,47	0,05	2,4	3,8	5,3	3,4	0,40	1,0	0,10
2	2,26 / 2,31	0,05	3,6	4,6	6,2	4,3	0,85	1,0	0,13
3	3,07 / 3,12	0,05	4,8	6,0	7,7	5,5	0,70	1,5	0,15
4	4,72 / 4,78	0,06	7,1	8,5	10,8	8,5	0,80	2,0	0,18
5	6,05 / 6,12	0,07	9,5	12,1	14,7	11,5	1,20	2,5	0,20
6	9,35 / 9,40	0,08	13,5	15,0	18,0	15,5	1,60	3,5	0,24

*Please see page 14 for selecting a suitable cross section depending on rod and bore diameter

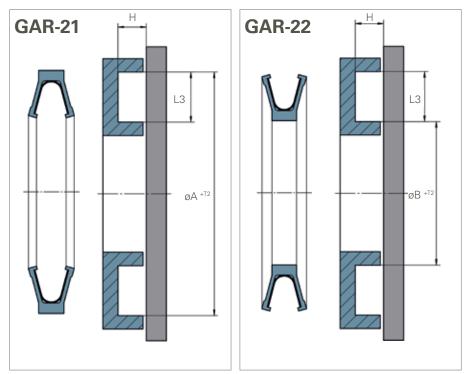
All statements in mm

Axial seal: Hardware design

Cross section	н	T2	L3 MIN
1	1,42 / 1,47	0,13	2,4
2	2,26 / 2,31	0,13	3,6
3	3,07 / 3,12	0,15	4,8
4	4,72 / 4,78	0,15	7,1
5	6,05 / 6,12	0,20	9,5
6	9,35 / 9,40	0,25	13,5

All statements in mm

 $\emptyset A$ = nominal OD (outer diameter) $\emptyset B$ = nominal ID (inner diameter)



GAR-SPRING Specials

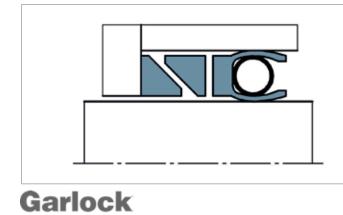
U Finger Springs

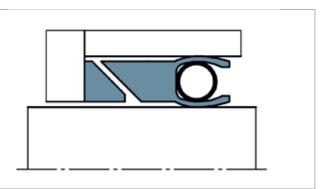
GAR-21 and GAR-22

The Axial Face Seals – GAR-21 and GAR-22 – employ a heavy duty, high load spring, recommended for extreme sealing conditions in static and dynamic applications. They are ideal for marine loading arm swivels and similar applications where high torque and clamping forces are present. Recommended for cryogenic applications, ultra-high vacuum and other thin gases.



Cross Section	Н	T2	L3 Minimum
3	3,07 / 3,12	0,15	4,8
4	4,72 / 4,78	0,15	7,1
5	6,05 / 6,12	0,20	9,5
6	9,35 / 9,40	0,25	13,5
7	12,40 / 12,45	0,30	16,5


All statements in mm


ØA= nominal OD (outer diameter) ØB= nominal ID (inner diameter)

Back-up rings

Back-up rings can be added to all GAR-SPRING styles. They are used in combination with axial and radial seals when the extrusion gap is too big for the required pressure and temperature (see table on page 13 for more information). The illustration below shows an exemplary setup of back-up rings in combination with our Helicoil Spring Style GAR-01.

GAR-SPRING Materials

Jacket Materials

Garlock offers a wide range of seal jacket materials, mainly based on PTFE resins. PTFE is resistant to most chemicals except chlorine trifluoride/fluorine gas at high temperatures and molten alkali metals. However, as many sealing applications use filled PTFE resins to improve performance, care should be taken that the filler will not be attacked by the sealed medium. Stainless steel and NACE approved springs are available as is a range of elastomeric energizers. When using elastomers, consideration of temperature/chemical compatibility should be taken into account. At temperatures below -40 °C, PTFE and many other jacket materials will harden and shrink. This behavior feature imposes higher loads on the energizer and may compromise sealing efficiency. Face seals (Axial Seals) are less affected than Radial Seals but we recommend to consult our technical department for seal designs working at -40 °C and below.

Code	Description	Color	Application	Temp °C	Friction Coeff.	Wear factor
01	Virgin PTFE	White	Excellent for light dynamic and static service. Low gas permeability. Good cryogenic properties. FDA approved	-260 +200	0,09	>1000 (High)
02	Premium PTFE	Blue	Similar properties to code 01 but with improved wear resistance	-260 +200	0,09	150
03	PTFE/Carbon/Graphite	Black	Excellent material for heat and wear resistance. Recommended for dry and poorly lubricated applications, suitable in water and steam service.	-260 +300	0,09	10
04	PTFE/Glass/MoS ₂	Grey	Recommended for high pressure hydraulic service, steam and water. Abrasive against soft metal in dynamic applications under high pressure.	-200 +260	0,08	10
05	PTFE/Carbon/Graphite	Black	Similar to code 03 but increased wear resistance. Excellent in steam and water under severe condi- tions. Very good extrusion resistance at high temperature. Excellent material for back up rings.	-250 +320	0,10	6
06	Premium PTFE	Black	Excellent material for extreme dynamic conditions. Combinations such as high temperature, pressure, speed and dry run. Excellent in water and water based solutions. Abrasive against soft metals.	-250 +300	0,09	1
07	PTFE/Bronze	Brown	Good abrasive resistance. Excellent in hydraulic applications. Not recommended for rotary applications.	-150 +290	0,08	5
08	PTFE/Polyester	Tan	Special compound for high temperature applications. Recommended for low to medium speed applications running against soft metals.	-240 +300	0,13	4
09	Econol filled PTFE	Brown	Special compound with superior heat and wear resistance characteristics. Non abrasive. Recommended for low to high speed running against soft metals. Not good in water.	-250 +340	0,15	3

GAR-SPRING Materials (continued)

Jacket Materials

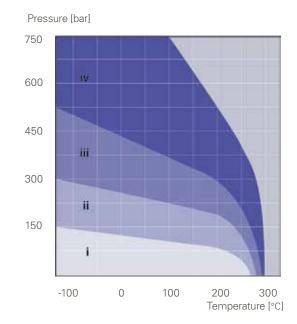
Code	Description	Col	Application	Temp °C	Friction Coeff.	Wear factor
10	UHMW-PE	White	Excellent wear material but limited heat and chemi- cal resistance. Excellent for cryogenic temperatures. FDA approved.	-250 +80	0,11	4
11	PTFE/Glass/MoS ₂	Grey	Similar to code 04 but softer for improved sealing at lower pressure. Can be abrasive running against soft metals.	-250 +300	0,09	1
12	PTFE/Graphite	Black	General purpose material with good heat and wear characteristics. Good in water, non lubricating fluids and compatible with all hydraulic fluids and most chemicals.		0,09	20
13	PEEK	Tan	A high modulus material with excellent high tem- perature resistance. Excellent for back-up rings only.		N/A	N/A
15	Filled PTFE	White	A food/drug compatible blend. Application tests should be carried out for prolonged use in water. FDA approved.		0,11	3
17	15% Glass Filled PTFE	White	Typically used for backup rings. Abrasive in dynamic applications running against soft metals.	-200 +270	0,10	3
21	Moly Filled PTFE	Dark Grey	Typically used in dynamic vacuum applications and in rotary duty in electronics industry.		0,09	10
22	Modified PTFE	White	Excellent for static applications, particularly good in cryogenic duty using thin gases, FDA approved.	-260 +230	0,09	10
23	Carbon/Peek Filled PTFE	Dark Tan	Useful high pressure/ high temperature material.	-120 +300	0,10	5

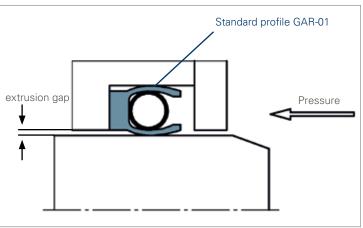
Spring Materials

Code No	Description	Name
01	AISI 301 1.4301	Standard for U Springs, commonly used in food & pharma applications
02	Elgiloy	Commonly used in oil and gas applications
03	Phynox	Standard for Helicoil Springs
04	17/7 ph	Special spring material

Elgiloy is a registered TM of the Elgiloy Co.

Technical Specifications


Height of extrusion gap depending on pressure and temperature


	Material	i	ii		iv
	Unfilled Filled PTFE	0,10 0,15	0,07 1,10	0,05 0,07	-
L1 WIDTH	Unfilled Filled PTFE	0,15 0,20	0,10 0,15	0,07 0,10	0,07
L2 WIDTH	Filled Back-up Peek Back-up	0,20 0,20	0,15 0,15	0,10 0,10	0,07 0,07

All statements in mm

Maximum recommended diametrical extrusion gaps

When sealing high pressure and/or temperature the clearance between the hardware, the so called "extrusion gap" (see table above and illustration on the right), becomes very important. At high pressure and/or temperature the jacket material can extrude into the gap causing premature sealing failure. The extrusion gap should be held to the minimum practical or should not exceed above values. Back-up rings are manufactured of a harder material than the seal material.

Surfaces Finish and Hardness

Dynamic

The quality of the surface finish influences the relative wear of the cover material. The transfer of a thin film of PTFE from the seal cover to the mating dynamic surface will improve seal life. Relatively rough finishes wear the cover material too rapidly, too smooth surfaces result in insufficient material transfer to form a thin film.

As a general rule, the higher the sealing surface hardness the better the seal performance. Higher hardness reduces wear and increases seal life. A 40 HRC or higher is recommended for slow to moderate movements. The ideal hardness is between 60 and 70 HRC.

Static

The surfaces for static face seals must be concentric.

	Surface finish [µm]			
Media being sealed	Dynamic	Static		
cryogenics helium gas hydrogen gas freon	0,05 to 0,2 Ra	0,1 to 0,3 Ra		
air nitrogen gas argon gas natural gas fuel	0,15 to 0,3 Ra	0,3 to 0,8 Ra		
water hydraulic oil crude oil sealants	0,2 to 0,4 Ra	0,4 to 1,6 Ra		

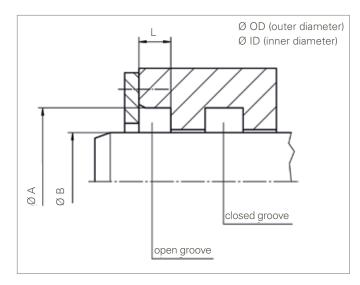
Assembly Notes

Seal diameter details

Helicoil Spring, GAR-01 to GAR-08 C/S (Cross section)	Minimum Rod	Minimum Bore
1	2	5
2	4	9
3	7	13
4	15	25
5	60	72
6	85	105

U Spring, GAR-11 to GAR-18 C/S (Cross section)	Minimum Rod	Minimum Bore
1	5	8
2	10	15
3	12	18
4	16	26
5	65	77
6	100	120

Axial seal (all Springs), GAR-09, -10, -19 and -20 C/S (Cross section)	Minimum I.D.	Minimum O.D.
1	6	10
2	12	15
3	20	26
4	45	50
5	85	95
6	100	110


U Finger Spring, GAR-21 and -22 C/S (Cross section)	Minimum I.D.	Minimum O.D.
3	20	26
4	40	45
5	85	95
6	100	120
7	120	150

All statements in mm

Special attention should be given to the assembly of PTFE seals. The diagram below shows possible installation designs for GAR-SPRING in open and closed grooves. Due to easier and safer installation open grooves should be used wherever possible.

It is not recommended to fit U Spring models GAR-11 to GAR-16 into closed grooves as the spring can be damaged. In special circumstances, Helicoil Spring models GAR-01 to GAR-06 can be fitted into closed grooves and Garlock will be happy to advise on suitability and offer advice about fitting tools.

Light, clean oil or grease may be used to assist assembly. Grease with fillers should not be used, and compatibility with sealed media should be considered.

Application Data Sheet

Service

Of course you can contact Garlock for an application-specific seal construction any time. To get this service as fast as possible, please order our application data sheet, which also can be found on our website www.garlock.com.

Company: Company: Name: Company: Phone: Seal model: Email: Seal model: Email: Lip material: Country: Lip material: Demand: Garlock ID: Application Data Ype of motion: inear ortary Shaft diameter of Imm]: Depth w (mm): Shaft diameter of Imm]: Depth w (mm): Shaft diameter of Imm]: Medium, Side A: Absolute pressure, Ichn(s), Side A: Temperature (*C), Side A:	Contact Information				AR-SPRIN		
Name: idem code:: Phone: Seal model: Email: Lip material: Country: Housing material: Demand: Garlock ID: Annual Demand: Garlock ID: Application Data Side A Shaft diameter D Imm): Imear rotary static Depth w (mm): Shaft diameter D Imm): Shaft diameter D Imm): Side A Depth w (mm): Yes No Shaft deflection Imm): Ves No Depth w (mm): Yes No Shaft deflection Imm): Yes No Det w (mm): Yes No Shaft deflection Imm): Yes No Dry running: Yes No Housing Side A: Sufface roughness Medium, Side A: Sufface roughness Absolute pressure, Idarloh, Side A: Sufface roughness Temperature (PC), Side A: Side Side Side Side Side Side Side Side	Company:				Other manufactures Information		
Prone: Seal model: Ernai: Lip materiai: Country: Housing materiai: Demand: Garlock Ip: Annual Demand: Garlock Ip: Annual Demand: Garlock Ip: Annual Demand: Garlock Ip: Shaft diameter d Imm): Inear rotary static Begin w Imm): Shaft diameter D Imm): Shaft diameter D Imm): Shaft deflection Imm): Shaft deflection Imm): Shaft deflection Imm): Shaft deflection Imm): No Country: Yes No Medium, Side A: No Absolute pressure Ipharlal), Side B: Side Cance oughness Absolute pressure Ipharlal), Side B: Side Cance oughness Absolute pressure Ipharlal, Side A: Side A : Temperature ['C], Side A: Ra Temperature ['C], Side B: Rz	Name:				Company:		
Country: Lip material: Demand: Garlock ID: Annual Demand: Garlock ID: Application Data Side A Ype of motion: linear ortary static Shaft diameter d [mm]: Side A Depth w [mm]: Shaft speed [m/s]: Shaft deflection [mm]: Lip material Shaft deflection [mm]: Lip material Shaft misalignment [mm]: Lip material Dry running: Yes No Medium, Side A: No Medium, Side A: Staftse roughness Absolute pressure, [bar(al), Side A: Staftse roughness Provenue repressure, [bar(al), Side A: Staft and sendent sendent Temperature ["C], Side A: Ra Temperature ["C], Side B: Ra	Phone:				Idem code.:		
Image:	Email:				- Seal model:		
Demand: Garlock ID: Annual Demand: Garlock ID: Application Data Shaft diameter of Imm?: Nussing diameter of Imm?: Imear ortary static Popth w (mm): Shaft speed (m/s): Shaft speed (m/s): Imear ortary static Shaft speed (m/s): Shaft misalignment (mm): Poy running: Yes No Poy running: Yes No Medium, Side A: Ves No Medium, Side A: State couplenes: Medium, Side A: Suboute pressure (barlel). Side A: Themas ambane pressure: State couplenes: Charling ambane pressure: State couplenes: Charling ambane pressure: State couplenes: Themas ambane pressure: Ra Temperature (°C), Side A: Ra Temperature (°C), Side B: Ra	Country:				Lip material:		
Anual Demand: Shaft diameter of Imm): Housing diameter O [mm]: Depth w [mm]: Depth w [mm]: Shaft diameter O [mm]: Depth w [mm]: Shaft diameter I [mm]: Depth w [mm]: Shaft diameter I [mm]: Dry running: Yes No Hedium, Side A: 1 benuin 2 ametering [bar(al), Side B: 1 benuin 2 ametering [bar(al), Side B: Absolute pressure, [bar(al), Side B: 1 benuin 2 ametering [bar(al), Side B: Absolute pressure, [bar(al), Side B: 1 benuin 2 ametering [bar(al), Side B: <td></td> <td></td> <td></td> <td></td> <td>- Housing material:</td> <td></td> <td></td>					- Housing material:		
Application Data Type of motion: Shaft diameter d Imm): Housing diameter D [mm]: Depth w [mm]: Depth w [mm]: Shaft deflection [mm]: Shaft deflection [mm]: Shaft deflection [mm]: Dryr running: Yes No Housing Side A: Medium, Side A: Tombient pressure, [bar(al), Side A: There repressure, [bar(al), Side B: There repressure [Cry, Side A: Temperature [°C, Side B:	Demand:				.		
Type of motion: linear rotary static Shaft diameter d [mm]: Housing diameter D [mm]: Depth w [mm]: Shaft diameter [m/s]: Shaft diameter [mm]: Shaft diameter [mm]: Dry running: Yes No FDA: Medium, Side A: Absolute pressure [bar(a)], Side A: Absolute pressure [bar(a)], Side A: Therear the ressure in the station i	Annual Demand:				Garlock ID:		
Immear rotary static Shaft diameter d [mm]: Housing diameter D [mm]: Depth w [mm]: Shaft speed [m/s]: Shaft speed [m/s]: Shaft misalignment [mm]: Dry running: Yes No FDA: Yes No Medium, Side A: Medium, Side B: Absolute pressure [bar(a)], Side A: 1 bartial sambient pressure Temperature [°C], Side A: Temperature [°C], Side B:	Application Data						
Shaft diameter d [mm]: Housing diameter D [mm]: Depth w [mm]: Shaft speed [m/s]: Shaft deflection [mm]: Shaft deflection [mm]: Dry running: Yes No FDA: Yes No Medium, Side A: Absolute pressure, [bar(a)], Side A: 1 bar(a) # arabient pressure Temperature [°C], Side A: Temperature [°C], Side B:	Type of motion:	linear 🗖	Totas 🗖				
Housing diameter D [mm]:	Shaft diameter d [mm]:		Totary []	static 🗌	Side A		Side B
Shaft speed [m/s]: Shaft deflection [mm]: Shaft misalignment [mm]: Dry running: FDA: Yes No Hodium, Side A: Medium, Side B: Absolute pressure [bar(a)], Side A: 1 barlabient pressure Absolute pressure, [bar(a)], Side B: 1 barlabient pressure Temperature (°C), Side A: Temperature (°C), Side B:	Housing diameter D [mm]:						
Shaft deflection [mm]: Shaft misalignment [mm]: Dry running: Yes No FDA: Yes No Medium, Side A: Medium, Side A: Absolute pressure, [bar(a)], Side A: 1 bar(a) # ambient pressure Absolute pressure, [bar(a)], Side B: 1 bar(a) # ambient pressure Temperature (°C), Side A: Temperature (°C), Side B:	Depth w [mm]:						
Shaft misalignment [mm]:	Shaft speed [m/s]:						
Dry running: Yes No FDA: Yes No FDA: Yes No Medium, Side A: Ves Ves Absolute pressure, (bar(a)), Side A: Ves Surface roughness Absolute pressure, (bar(a)), Side B: Surface roughness Surface hardness Temperature (°C), Side A: Ra HRC) Temperature (°C), Side B: Rz HRC)	Shaft deflection [mm]:						////
FDA: Yes No FDA: Yes No Medium, Side A: Ves No Medium, Side B: Ves No Absolute pressure, [bar(a)], Side A: Ves Surface roughness Absolute pressure, [bar(a)], Side A: Ra (HRC) Temperature (°C), Side A: Rz Rz	Shaft misalignment [mm]:				•		
FDA: Yes No Medium, Side A: Volume Volume Medium, Side B: Volume Volume Absolute pressure, [bar(a)], Side A: Volume Surface roughness Surface hardness Absolute pressure, [bar(a)], Side B: Ra (HRC) Image: Constraint of the surface for the surfa	Dry running:	Yes 🗌	No 🗆				\leq
Medium, Side A: V C Medium, Side B: C C Absolute pressure, [bar(a)], Side A: Surface roughness Surface hardness Absolute pressure, [bar(a)], Side B: Ra (HRC) Temperature (°C), Side A: Rz	FDA:				1 t		7
Medium, Side B: Image: Constraint of the state of the	Medium, Side A:						>
Absolute pressure, [bar(a)], Side A: Surface roughness Surface hardness 1 bar(a) ≙ ambient pressure Ra (HRC) Temperature [°C], Side A: Rz	Medium, Side B:						/
Absolute pressure Surface roughness Surface hardness 1 bar(a) ≙ ambient pressure Ra (HRC) Temperature (°C), Side A: Rz	Absolute pressure, [bar(a)], Side A: 1 bar(a) ≙ ambient pressure				Q		
Temperature [°C], Side A: Rz Temperature [°C], Side B: Rz	Absolute pressure, [bar(a)], Side B: 1 bar(a) ≙ ambient pressure					Surface hardness	5
remperature (°C), Side B:	Temperature [°C], Side A:					(HRC)	
Hmax	Temperature [°C], Side B:						
					Rmax		
	ARLOCK GMBH						
ARLOCK GMRH	Pro Industries family of companies	Garlock Sealing	Technologies	Garl	ock de Canada, LTD	Carlos	
ARLOCK GMBH Garlock Sealing Technologiae Collection	lkenweg 1, 41468 Neuss, Germany	3PT	- or mologies	Garl	ock China	Garlock de Garlock Na	Mexico, S.A. De C.V.
IPPo Industries family of companies Garlock Sealing Technologies Garlock de Canada, LTD Garlock de Mexico, S.A. De C.V. Ikenweg 1, 41468 Neuss, Germany Garlock DTV Garlock China Control Mexico, S.A. De C.V.		Garlock do Bras		Garl	ock Singapore ock USA	Garlock Gr	eat Britain Limited

Note: Properties/applications shown throughout this brochure are typical. Your specific application should not be undertaken without independent study and evaluation for suitability. For specific application recommendations consult Garlock. Failure to select the proper sealing products could result in property damage and/or serious personal injury. Performance data published in this brochure has been developed from field testing, customer field reports and/or in-house testing. While the utmost care has been used in compiling this brochure, we assume no responsibility for errors. Specifications subject to change without notice. This edition cancels all previous issues. Subject to change without notice GARLOCK is a registered trademark for packings, seals, gaskets, and other products of Garlock. © Garlock Inc 2016. All rights reserved worldwide.

GARLOCK GMBH

EnPro Industries family of companies Falkenweg 1, 41468 Neuss, Germany Tel: +49 2131 349 0 www.garlock.com

Garlock Sealing Technologies GPT Garlock PTY Garlock do Brasil

Garlock de Canada, LTD Garlock China Garlock Singapore Garlock USA Garlock India Private Limited Garlock de Mexico, S.A. De C.V. Garlock New Zealand Garlock Great Britain Limited Garlock Middle East